Description: pm4.39 with a 3-conjunct antecedent. This proof is 3orbi123VD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3orbi123 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ph <-> ps ) ) | |
| 2 | simp2 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ch <-> th ) ) | |
| 3 | simp3 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ta <-> et ) ) | |
| 4 | 1 2 3 | 3orbi123d | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) /\ ( ta <-> et ) ) -> ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) ) |