Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bi3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
bi3d.2 | |- ( ph -> ( th <-> ta ) ) |
||
bi3d.3 | |- ( ph -> ( et <-> ze ) ) |
||
Assertion | 3orbi123d | |- ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | bi3d.2 | |- ( ph -> ( th <-> ta ) ) |
|
3 | bi3d.3 | |- ( ph -> ( et <-> ze ) ) |
|
4 | 1 2 | orbi12d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |
5 | 4 3 | orbi12d | |- ( ph -> ( ( ( ps \/ th ) \/ et ) <-> ( ( ch \/ ta ) \/ ze ) ) ) |
6 | df-3or | |- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
|
7 | df-3or | |- ( ( ch \/ ta \/ ze ) <-> ( ( ch \/ ta ) \/ ze ) ) |
|
8 | 5 6 7 | 3bitr4g | |- ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) ) |