Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| bi3d.2 | |- ( ph -> ( th <-> ta ) ) |
||
| bi3d.3 | |- ( ph -> ( et <-> ze ) ) |
||
| Assertion | 3orbi123d | |- ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3d.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | bi3d.2 | |- ( ph -> ( th <-> ta ) ) |
|
| 3 | bi3d.3 | |- ( ph -> ( et <-> ze ) ) |
|
| 4 | 1 2 | orbi12d | |- ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) ) |
| 5 | 4 3 | orbi12d | |- ( ph -> ( ( ( ps \/ th ) \/ et ) <-> ( ( ch \/ ta ) \/ ze ) ) ) |
| 6 | df-3or | |- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
|
| 7 | df-3or | |- ( ( ch \/ ta \/ ze ) <-> ( ( ch \/ ta ) \/ ze ) ) |
|
| 8 | 5 6 7 | 3bitr4g | |- ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) ) |