Metamath Proof Explorer


Theorem 3orbi123d

Description: Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994)

Ref Expression
Hypotheses bi3d.1
|- ( ph -> ( ps <-> ch ) )
bi3d.2
|- ( ph -> ( th <-> ta ) )
bi3d.3
|- ( ph -> ( et <-> ze ) )
Assertion 3orbi123d
|- ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) )

Proof

Step Hyp Ref Expression
1 bi3d.1
 |-  ( ph -> ( ps <-> ch ) )
2 bi3d.2
 |-  ( ph -> ( th <-> ta ) )
3 bi3d.3
 |-  ( ph -> ( et <-> ze ) )
4 1 2 orbi12d
 |-  ( ph -> ( ( ps \/ th ) <-> ( ch \/ ta ) ) )
5 4 3 orbi12d
 |-  ( ph -> ( ( ( ps \/ th ) \/ et ) <-> ( ( ch \/ ta ) \/ ze ) ) )
6 df-3or
 |-  ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) )
7 df-3or
 |-  ( ( ch \/ ta \/ ze ) <-> ( ( ch \/ ta ) \/ ze ) )
8 5 6 7 3bitr4g
 |-  ( ph -> ( ( ps \/ th \/ et ) <-> ( ch \/ ta \/ ze ) ) )