Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bi3.1 | |- ( ph <-> ps ) |
|
| bi3.2 | |- ( ch <-> th ) |
||
| bi3.3 | |- ( ta <-> et ) |
||
| Assertion | 3orbi123i | |- ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | |- ( ph <-> ps ) |
|
| 2 | bi3.2 | |- ( ch <-> th ) |
|
| 3 | bi3.3 | |- ( ta <-> et ) |
|
| 4 | 1 2 | orbi12i | |- ( ( ph \/ ch ) <-> ( ps \/ th ) ) |
| 5 | 4 3 | orbi12i | |- ( ( ( ph \/ ch ) \/ ta ) <-> ( ( ps \/ th ) \/ et ) ) |
| 6 | df-3or | |- ( ( ph \/ ch \/ ta ) <-> ( ( ph \/ ch ) \/ ta ) ) |
|
| 7 | df-3or | |- ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) ) |
|
| 8 | 5 6 7 | 3bitr4i | |- ( ( ph \/ ch \/ ta ) <-> ( ps \/ th \/ et ) ) |