Metamath Proof Explorer


Theorem 3orcoma

Description: Commutation law for triple disjunction. (Contributed by Mario Carneiro, 4-Sep-2016)

Ref Expression
Assertion 3orcoma
|- ( ( ph \/ ps \/ ch ) <-> ( ps \/ ph \/ ch ) )

Proof

Step Hyp Ref Expression
1 or12
 |-  ( ( ph \/ ( ps \/ ch ) ) <-> ( ps \/ ( ph \/ ch ) ) )
2 3orass
 |-  ( ( ph \/ ps \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )
3 3orass
 |-  ( ( ps \/ ph \/ ch ) <-> ( ps \/ ( ph \/ ch ) ) )
4 1 2 3 3bitr4i
 |-  ( ( ph \/ ps \/ ch ) <-> ( ps \/ ph \/ ch ) )