Metamath Proof Explorer


Theorem 3ori

Description: Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006)

Ref Expression
Hypothesis 3ori.1
|- ( ph \/ ps \/ ch )
Assertion 3ori
|- ( ( -. ph /\ -. ps ) -> ch )

Proof

Step Hyp Ref Expression
1 3ori.1
 |-  ( ph \/ ps \/ ch )
2 ioran
 |-  ( -. ( ph \/ ps ) <-> ( -. ph /\ -. ps ) )
3 df-3or
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )
4 1 3 mpbi
 |-  ( ( ph \/ ps ) \/ ch )
5 4 ori
 |-  ( -. ( ph \/ ps ) -> ch )
6 2 5 sylbir
 |-  ( ( -. ph /\ -. ps ) -> ch )