Metamath Proof Explorer


Theorem 3orim123d

Description: Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997)

Ref Expression
Hypotheses 3anim123d.1
|- ( ph -> ( ps -> ch ) )
3anim123d.2
|- ( ph -> ( th -> ta ) )
3anim123d.3
|- ( ph -> ( et -> ze ) )
Assertion 3orim123d
|- ( ph -> ( ( ps \/ th \/ et ) -> ( ch \/ ta \/ ze ) ) )

Proof

Step Hyp Ref Expression
1 3anim123d.1
 |-  ( ph -> ( ps -> ch ) )
2 3anim123d.2
 |-  ( ph -> ( th -> ta ) )
3 3anim123d.3
 |-  ( ph -> ( et -> ze ) )
4 1 2 orim12d
 |-  ( ph -> ( ( ps \/ th ) -> ( ch \/ ta ) ) )
5 4 3 orim12d
 |-  ( ph -> ( ( ( ps \/ th ) \/ et ) -> ( ( ch \/ ta ) \/ ze ) ) )
6 df-3or
 |-  ( ( ps \/ th \/ et ) <-> ( ( ps \/ th ) \/ et ) )
7 df-3or
 |-  ( ( ch \/ ta \/ ze ) <-> ( ( ch \/ ta ) \/ ze ) )
8 5 6 7 3imtr4g
 |-  ( ph -> ( ( ps \/ th \/ et ) -> ( ch \/ ta \/ ze ) ) )