Metamath Proof Explorer


Theorem 3ornot23

Description: If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion 3ornot23
|- ( ( -. ph /\ -. ps ) -> ( ( ch \/ ph \/ ps ) -> ch ) )

Proof

Step Hyp Ref Expression
1 idd
 |-  ( -. ph -> ( ch -> ch ) )
2 pm2.21
 |-  ( -. ph -> ( ph -> ch ) )
3 pm2.21
 |-  ( -. ps -> ( ps -> ch ) )
4 1 2 3 3jaao
 |-  ( ( -. ph /\ -. ph /\ -. ps ) -> ( ( ch \/ ph \/ ps ) -> ch ) )
5 4 3anidm12
 |-  ( ( -. ph /\ -. ps ) -> ( ( ch \/ ph \/ ps ) -> ch ) )