Metamath Proof Explorer


Theorem 3orrot

Description: Rotation law for triple disjunction. (Contributed by NM, 4-Apr-1995)

Ref Expression
Assertion 3orrot
|- ( ( ph \/ ps \/ ch ) <-> ( ps \/ ch \/ ph ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( ph \/ ( ps \/ ch ) ) <-> ( ( ps \/ ch ) \/ ph ) )
2 3orass
 |-  ( ( ph \/ ps \/ ch ) <-> ( ph \/ ( ps \/ ch ) ) )
3 df-3or
 |-  ( ( ps \/ ch \/ ph ) <-> ( ( ps \/ ch ) \/ ph ) )
4 1 2 3 3bitr4i
 |-  ( ( ph \/ ps \/ ch ) <-> ( ps \/ ch \/ ph ) )