Metamath Proof Explorer


Theorem 3pm3.2i

Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995)

Ref Expression
Hypotheses 3pm3.2i.1
|- ph
3pm3.2i.2
|- ps
3pm3.2i.3
|- ch
Assertion 3pm3.2i
|- ( ph /\ ps /\ ch )

Proof

Step Hyp Ref Expression
1 3pm3.2i.1
 |-  ph
2 3pm3.2i.2
 |-  ps
3 3pm3.2i.3
 |-  ch
4 1 2 pm3.2i
 |-  ( ph /\ ps )
5 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
6 4 3 5 mpbir2an
 |-  ( ph /\ ps /\ ch )