Step |
Hyp |
Ref |
Expression |
1 |
|
2polss.a |
|- A = ( Atoms ` K ) |
2 |
|
2polss.p |
|- ._|_ = ( _|_P ` K ) |
3 |
|
hlclat |
|- ( K e. HL -> K e. CLat ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
4 1
|
atssbase |
|- A C_ ( Base ` K ) |
6 |
|
sstr |
|- ( ( S C_ A /\ A C_ ( Base ` K ) ) -> S C_ ( Base ` K ) ) |
7 |
5 6
|
mpan2 |
|- ( S C_ A -> S C_ ( Base ` K ) ) |
8 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
9 |
4 8
|
clatlubcl |
|- ( ( K e. CLat /\ S C_ ( Base ` K ) ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
10 |
3 7 9
|
syl2an |
|- ( ( K e. HL /\ S C_ A ) -> ( ( lub ` K ) ` S ) e. ( Base ` K ) ) |
11 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
12 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
13 |
4 11 12 2
|
polpmapN |
|- ( ( K e. HL /\ ( ( lub ` K ) ` S ) e. ( Base ` K ) ) -> ( ._|_ ` ( ( pmap ` K ) ` ( ( lub ` K ) ` S ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
14 |
10 13
|
syldan |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` ( ( pmap ` K ) ` ( ( lub ` K ) ` S ) ) ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
15 |
8 1 12 2
|
2polvalN |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` ( ._|_ ` S ) ) = ( ( pmap ` K ) ` ( ( lub ` K ) ` S ) ) ) |
16 |
15
|
fveq2d |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) = ( ._|_ ` ( ( pmap ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
17 |
8 11 1 12 2
|
polval2N |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` S ) = ( ( pmap ` K ) ` ( ( oc ` K ) ` ( ( lub ` K ) ` S ) ) ) ) |
18 |
14 16 17
|
3eqtr4d |
|- ( ( K e. HL /\ S C_ A ) -> ( ._|_ ` ( ._|_ ` ( ._|_ ` S ) ) ) = ( ._|_ ` S ) ) |