Step |
Hyp |
Ref |
Expression |
1 |
|
3z |
|- 3 e. ZZ |
2 |
|
1lt3 |
|- 1 < 3 |
3 |
|
eluz2b1 |
|- ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 1 < 3 ) ) |
4 |
1 2 3
|
mpbir2an |
|- 3 e. ( ZZ>= ` 2 ) |
5 |
|
elfz1eq |
|- ( z e. ( 2 ... 2 ) -> z = 2 ) |
6 |
|
n2dvds3 |
|- -. 2 || 3 |
7 |
|
breq1 |
|- ( z = 2 -> ( z || 3 <-> 2 || 3 ) ) |
8 |
6 7
|
mtbiri |
|- ( z = 2 -> -. z || 3 ) |
9 |
5 8
|
syl |
|- ( z e. ( 2 ... 2 ) -> -. z || 3 ) |
10 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
11 |
10
|
oveq2i |
|- ( 2 ... ( 3 - 1 ) ) = ( 2 ... 2 ) |
12 |
9 11
|
eleq2s |
|- ( z e. ( 2 ... ( 3 - 1 ) ) -> -. z || 3 ) |
13 |
12
|
rgen |
|- A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 |
14 |
|
isprm3 |
|- ( 3 e. Prime <-> ( 3 e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 ) ) |
15 |
4 13 14
|
mpbir2an |
|- 3 e. Prime |