| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3z |  |-  3 e. ZZ | 
						
							| 2 |  | 1lt3 |  |-  1 < 3 | 
						
							| 3 |  | eluz2b1 |  |-  ( 3 e. ( ZZ>= ` 2 ) <-> ( 3 e. ZZ /\ 1 < 3 ) ) | 
						
							| 4 | 1 2 3 | mpbir2an |  |-  3 e. ( ZZ>= ` 2 ) | 
						
							| 5 |  | elfz1eq |  |-  ( z e. ( 2 ... 2 ) -> z = 2 ) | 
						
							| 6 |  | n2dvds3 |  |-  -. 2 || 3 | 
						
							| 7 |  | breq1 |  |-  ( z = 2 -> ( z || 3 <-> 2 || 3 ) ) | 
						
							| 8 | 6 7 | mtbiri |  |-  ( z = 2 -> -. z || 3 ) | 
						
							| 9 | 5 8 | syl |  |-  ( z e. ( 2 ... 2 ) -> -. z || 3 ) | 
						
							| 10 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 11 | 10 | oveq2i |  |-  ( 2 ... ( 3 - 1 ) ) = ( 2 ... 2 ) | 
						
							| 12 | 9 11 | eleq2s |  |-  ( z e. ( 2 ... ( 3 - 1 ) ) -> -. z || 3 ) | 
						
							| 13 | 12 | rgen |  |-  A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 | 
						
							| 14 |  | isprm3 |  |-  ( 3 e. Prime <-> ( 3 e. ( ZZ>= ` 2 ) /\ A. z e. ( 2 ... ( 3 - 1 ) ) -. z || 3 ) ) | 
						
							| 15 | 4 13 14 | mpbir2an |  |-  3 e. Prime |