Metamath Proof Explorer


Theorem 3rp

Description: 3 is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion 3rp
|- 3 e. RR+

Proof

Step Hyp Ref Expression
1 3re
 |-  3 e. RR
2 3pos
 |-  0 < 3
3 1 2 elrpii
 |-  3 e. RR+