Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Subclasses and subsets
3sstr4d
Metamath Proof Explorer
Description: Substitution of equality into both sides of a subclass relationship.
(Contributed by NM , 30-Nov-1995) (Proof shortened by Eric Schmidt , 26-Jan-2007)
Ref
Expression
Hypotheses
3sstr4d.1
|- ( ph -> A C_ B )
3sstr4d.2
|- ( ph -> C = A )
3sstr4d.3
|- ( ph -> D = B )
Assertion
3sstr4d
|- ( ph -> C C_ D )
Proof
Step
Hyp
Ref
Expression
1
3sstr4d.1
|- ( ph -> A C_ B )
2
3sstr4d.2
|- ( ph -> C = A )
3
3sstr4d.3
|- ( ph -> D = B )
4
2 1
eqsstrd
|- ( ph -> C C_ B )
5
4 3
sseqtrrd
|- ( ph -> C C_ D )