Metamath Proof Explorer


Theorem 3syld

Description: Triple syllogism deduction. Deduction associated with 3syld . (Contributed by Jeff Hankins, 4-Aug-2009)

Ref Expression
Hypotheses 3syld.1
|- ( ph -> ( ps -> ch ) )
3syld.2
|- ( ph -> ( ch -> th ) )
3syld.3
|- ( ph -> ( th -> ta ) )
Assertion 3syld
|- ( ph -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 3syld.1
 |-  ( ph -> ( ps -> ch ) )
2 3syld.2
 |-  ( ph -> ( ch -> th ) )
3 3syld.3
 |-  ( ph -> ( th -> ta ) )
4 1 2 syld
 |-  ( ph -> ( ps -> th ) )
5 4 3 syld
 |-  ( ph -> ( ps -> ta ) )