Metamath Proof Explorer


Theorem 3t3e9

Description: 3 times 3 equals 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 3t3e9
|- ( 3 x. 3 ) = 9

Proof

Step Hyp Ref Expression
1 df-3
 |-  3 = ( 2 + 1 )
2 1 oveq2i
 |-  ( 3 x. 3 ) = ( 3 x. ( 2 + 1 ) )
3 3cn
 |-  3 e. CC
4 2cn
 |-  2 e. CC
5 ax-1cn
 |-  1 e. CC
6 3 4 5 adddii
 |-  ( 3 x. ( 2 + 1 ) ) = ( ( 3 x. 2 ) + ( 3 x. 1 ) )
7 3t2e6
 |-  ( 3 x. 2 ) = 6
8 3t1e3
 |-  ( 3 x. 1 ) = 3
9 7 8 oveq12i
 |-  ( ( 3 x. 2 ) + ( 3 x. 1 ) ) = ( 6 + 3 )
10 6 9 eqtri
 |-  ( 3 x. ( 2 + 1 ) ) = ( 6 + 3 )
11 6p3e9
 |-  ( 6 + 3 ) = 9
12 10 11 eqtri
 |-  ( 3 x. ( 2 + 1 ) ) = 9
13 2 12 eqtri
 |-  ( 3 x. 3 ) = 9