Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
|- P = <" A B C D "> |
2 |
|
3wlkd.f |
|- F = <" J K L "> |
3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
6 |
|
3wlkd.v |
|- V = ( Vtx ` G ) |
7 |
|
3wlkd.i |
|- I = ( iEdg ` G ) |
8 |
|
3trld.n |
|- ( ph -> ( J =/= K /\ J =/= L /\ K =/= L ) ) |
9 |
1 2 3 4 5 6 7
|
3wlkd |
|- ( ph -> F ( Walks ` G ) P ) |
10 |
1 2 3 4 5
|
3wlkdlem7 |
|- ( ph -> ( J e. _V /\ K e. _V /\ L e. _V ) ) |
11 |
|
funcnvs3 |
|- ( ( ( J e. _V /\ K e. _V /\ L e. _V ) /\ ( J =/= K /\ J =/= L /\ K =/= L ) ) -> Fun `' <" J K L "> ) |
12 |
10 8 11
|
syl2anc |
|- ( ph -> Fun `' <" J K L "> ) |
13 |
2
|
cnveqi |
|- `' F = `' <" J K L "> |
14 |
13
|
funeqi |
|- ( Fun `' F <-> Fun `' <" J K L "> ) |
15 |
12 14
|
sylibr |
|- ( ph -> Fun `' F ) |
16 |
|
istrl |
|- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
17 |
9 15 16
|
sylanbrc |
|- ( ph -> F ( Trails ` G ) P ) |