| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3wlkd.p |  |-  P = <" A B C D "> | 
						
							| 2 |  | 3wlkd.f |  |-  F = <" J K L "> | 
						
							| 3 |  | 3wlkd.s |  |-  ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) | 
						
							| 4 |  | 3wlkd.n |  |-  ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) | 
						
							| 5 |  | 3wlkd.e |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) | 
						
							| 6 |  | 3wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 7 |  | 3wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 8 |  | s4cli |  |-  <" A B C D "> e. Word _V | 
						
							| 9 | 1 8 | eqeltri |  |-  P e. Word _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> P e. Word _V ) | 
						
							| 11 |  | s3cli |  |-  <" J K L "> e. Word _V | 
						
							| 12 | 2 11 | eqeltri |  |-  F e. Word _V | 
						
							| 13 | 12 | a1i |  |-  ( ph -> F e. Word _V ) | 
						
							| 14 | 1 2 | 3wlkdlem1 |  |-  ( # ` P ) = ( ( # ` F ) + 1 ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) | 
						
							| 16 | 1 2 3 4 5 | 3wlkdlem10 |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
							| 17 | 1 2 3 4 | 3wlkdlem5 |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 18 | 6 | 1vgrex |  |-  ( A e. V -> G e. _V ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> G e. _V ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> G e. _V ) | 
						
							| 21 | 1 2 3 | 3wlkdlem4 |  |-  ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) | 
						
							| 22 | 10 13 15 16 17 20 6 7 21 | wlkd |  |-  ( ph -> F ( Walks ` G ) P ) |