Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
|- P = <" A B C D "> |
2 |
|
3wlkd.f |
|- F = <" J K L "> |
3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
6 |
1 2 3 4 5
|
3wlkdlem9 |
|- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) |
7 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
8 |
|
preq12 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
9 |
8
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
10 |
9
|
sseq1d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` ( F ` 0 ) ) ) ) |
11 |
|
simplr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 1 ) = B ) |
12 |
|
simprl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( P ` 2 ) = C ) |
13 |
11 12
|
preq12d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
14 |
13
|
sseq1d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |
15 |
|
preq12 |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> { ( P ` 2 ) , ( P ` 3 ) } = { C , D } ) |
16 |
15
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 2 ) , ( P ` 3 ) } = { C , D } ) |
17 |
16
|
sseq1d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) <-> { C , D } C_ ( I ` ( F ` 2 ) ) ) ) |
18 |
10 14 17
|
3anbi123d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) ) |
19 |
7 18
|
syl |
|- ( ph -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) <-> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) /\ { C , D } C_ ( I ` ( F ` 2 ) ) ) ) ) |
20 |
6 19
|
mpbird |
|- ( ph -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
21 |
1 2
|
3wlkdlem2 |
|- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 } |
22 |
21
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> A. k e. { 0 , 1 , 2 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
23 |
|
c0ex |
|- 0 e. _V |
24 |
|
1ex |
|- 1 e. _V |
25 |
|
2ex |
|- 2 e. _V |
26 |
|
fveq2 |
|- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
27 |
|
fv0p1e1 |
|- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
28 |
26 27
|
preq12d |
|- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
29 |
|
2fveq3 |
|- ( k = 0 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 0 ) ) ) |
30 |
28 29
|
sseq12d |
|- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
31 |
|
fveq2 |
|- ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) |
32 |
|
oveq1 |
|- ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) |
33 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
34 |
32 33
|
eqtrdi |
|- ( k = 1 -> ( k + 1 ) = 2 ) |
35 |
34
|
fveq2d |
|- ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) |
36 |
31 35
|
preq12d |
|- ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) |
37 |
|
2fveq3 |
|- ( k = 1 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 1 ) ) ) |
38 |
36 37
|
sseq12d |
|- ( k = 1 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) ) ) |
39 |
|
fveq2 |
|- ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) |
40 |
|
oveq1 |
|- ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) |
41 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
42 |
40 41
|
eqtrdi |
|- ( k = 2 -> ( k + 1 ) = 3 ) |
43 |
42
|
fveq2d |
|- ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) |
44 |
39 43
|
preq12d |
|- ( k = 2 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) |
45 |
|
2fveq3 |
|- ( k = 2 -> ( I ` ( F ` k ) ) = ( I ` ( F ` 2 ) ) ) |
46 |
44 45
|
sseq12d |
|- ( k = 2 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
47 |
23 24 25 30 38 46
|
raltp |
|- ( A. k e. { 0 , 1 , 2 } { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
48 |
22 47
|
bitri |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` ( F ` 1 ) ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` ( F ` 2 ) ) ) ) |
49 |
20 48
|
sylibr |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |