Metamath Proof Explorer


Theorem 3wlkdlem2

Description: Lemma 2 for 3wlkd . (Contributed by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p
|- P = <" A B C D ">
3wlkd.f
|- F = <" J K L ">
Assertion 3wlkdlem2
|- ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 }

Proof

Step Hyp Ref Expression
1 3wlkd.p
 |-  P = <" A B C D ">
2 3wlkd.f
 |-  F = <" J K L ">
3 2 fveq2i
 |-  ( # ` F ) = ( # ` <" J K L "> )
4 s3len
 |-  ( # ` <" J K L "> ) = 3
5 3 4 eqtri
 |-  ( # ` F ) = 3
6 5 oveq2i
 |-  ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 3 )
7 fzo0to3tp
 |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 }
8 6 7 eqtri
 |-  ( 0 ..^ ( # ` F ) ) = { 0 , 1 , 2 }