Step |
Hyp |
Ref |
Expression |
1 |
|
3wlkd.p |
|- P = <" A B C D "> |
2 |
|
3wlkd.f |
|- F = <" J K L "> |
3 |
|
3wlkd.s |
|- ( ph -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) ) |
4 |
|
3wlkd.n |
|- ( ph -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= D ) /\ C =/= D ) ) |
5 |
|
3wlkd.e |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) |
6 |
1 2 3
|
3wlkdlem3 |
|- ( ph -> ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) ) |
7 |
|
preq12 |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> { ( P ` 0 ) , ( P ` 1 ) } = { A , B } ) |
8 |
7
|
sseq1d |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) <-> { A , B } C_ ( I ` J ) ) ) |
9 |
8
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) <-> { A , B } C_ ( I ` J ) ) ) |
10 |
|
preq12 |
|- ( ( ( P ` 1 ) = B /\ ( P ` 2 ) = C ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
11 |
10
|
ad2ant2lr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> { ( P ` 1 ) , ( P ` 2 ) } = { B , C } ) |
12 |
11
|
sseq1d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) <-> { B , C } C_ ( I ` K ) ) ) |
13 |
|
preq12 |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> { ( P ` 2 ) , ( P ` 3 ) } = { C , D } ) |
14 |
13
|
sseq1d |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) <-> { C , D } C_ ( I ` L ) ) ) |
15 |
14
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) <-> { C , D } C_ ( I ` L ) ) ) |
16 |
9 12 15
|
3anbi123d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) /\ { C , D } C_ ( I ` L ) ) ) ) |
17 |
5 16
|
syl5ibrcom |
|- ( ph -> ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) ) ) ) |
18 |
6 17
|
mpd |
|- ( ph -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) ) ) |
19 |
|
fvex |
|- ( P ` 0 ) e. _V |
20 |
|
fvex |
|- ( P ` 1 ) e. _V |
21 |
19 20
|
prss |
|- ( ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` J ) ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) ) |
22 |
|
simpl |
|- ( ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` J ) ) -> ( P ` 0 ) e. ( I ` J ) ) |
23 |
21 22
|
sylbir |
|- ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) -> ( P ` 0 ) e. ( I ` J ) ) |
24 |
|
fvex |
|- ( P ` 2 ) e. _V |
25 |
20 24
|
prss |
|- ( ( ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` K ) ) <-> { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) ) |
26 |
|
simpl |
|- ( ( ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` K ) ) -> ( P ` 1 ) e. ( I ` K ) ) |
27 |
25 26
|
sylbir |
|- ( { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) -> ( P ` 1 ) e. ( I ` K ) ) |
28 |
|
fvex |
|- ( P ` 3 ) e. _V |
29 |
24 28
|
prss |
|- ( ( ( P ` 2 ) e. ( I ` L ) /\ ( P ` 3 ) e. ( I ` L ) ) <-> { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) ) |
30 |
|
simpl |
|- ( ( ( P ` 2 ) e. ( I ` L ) /\ ( P ` 3 ) e. ( I ` L ) ) -> ( P ` 2 ) e. ( I ` L ) ) |
31 |
29 30
|
sylbir |
|- ( { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) -> ( P ` 2 ) e. ( I ` L ) ) |
32 |
23 27 31
|
3anim123i |
|- ( ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` J ) /\ { ( P ` 1 ) , ( P ` 2 ) } C_ ( I ` K ) /\ { ( P ` 2 ) , ( P ` 3 ) } C_ ( I ` L ) ) -> ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` L ) ) ) |
33 |
18 32
|
syl |
|- ( ph -> ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` L ) ) ) |
34 |
|
eleq1 |
|- ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. ( I ` J ) <-> A e. ( I ` J ) ) ) |
35 |
34
|
adantr |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 0 ) e. ( I ` J ) <-> A e. ( I ` J ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 0 ) e. ( I ` J ) <-> A e. ( I ` J ) ) ) |
37 |
|
eleq1 |
|- ( ( P ` 1 ) = B -> ( ( P ` 1 ) e. ( I ` K ) <-> B e. ( I ` K ) ) ) |
38 |
37
|
adantl |
|- ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) -> ( ( P ` 1 ) e. ( I ` K ) <-> B e. ( I ` K ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 1 ) e. ( I ` K ) <-> B e. ( I ` K ) ) ) |
40 |
|
eleq1 |
|- ( ( P ` 2 ) = C -> ( ( P ` 2 ) e. ( I ` L ) <-> C e. ( I ` L ) ) ) |
41 |
40
|
adantr |
|- ( ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) -> ( ( P ` 2 ) e. ( I ` L ) <-> C e. ( I ` L ) ) ) |
42 |
41
|
adantl |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( P ` 2 ) e. ( I ` L ) <-> C e. ( I ` L ) ) ) |
43 |
36 39 42
|
3anbi123d |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` L ) ) <-> ( A e. ( I ` J ) /\ B e. ( I ` K ) /\ C e. ( I ` L ) ) ) ) |
44 |
43
|
bicomd |
|- ( ( ( ( P ` 0 ) = A /\ ( P ` 1 ) = B ) /\ ( ( P ` 2 ) = C /\ ( P ` 3 ) = D ) ) -> ( ( A e. ( I ` J ) /\ B e. ( I ` K ) /\ C e. ( I ` L ) ) <-> ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` L ) ) ) ) |
45 |
6 44
|
syl |
|- ( ph -> ( ( A e. ( I ` J ) /\ B e. ( I ` K ) /\ C e. ( I ` L ) ) <-> ( ( P ` 0 ) e. ( I ` J ) /\ ( P ` 1 ) e. ( I ` K ) /\ ( P ` 2 ) e. ( I ` L ) ) ) ) |
46 |
33 45
|
mpbird |
|- ( ph -> ( A e. ( I ` J ) /\ B e. ( I ` K ) /\ C e. ( I ` L ) ) ) |