Description: 4001 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4001prm.1 | |- N = ; ; ; 4 0 0 1 |
|
| Assertion | 4001prm | |- N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4001prm.1 | |- N = ; ; ; 4 0 0 1 |
|
| 2 | 5prm | |- 5 e. Prime |
|
| 3 | 8nn | |- 8 e. NN |
|
| 4 | 3 | decnncl2 | |- ; 8 0 e. NN |
| 5 | 4 | decnncl2 | |- ; ; 8 0 0 e. NN |
| 6 | 4nn0 | |- 4 e. NN0 |
|
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | 6 7 | deccl | |- ; 4 0 e. NN0 |
| 9 | 8 7 | deccl | |- ; ; 4 0 0 e. NN0 |
| 10 | 9 7 | deccl | |- ; ; ; 4 0 0 0 e. NN0 |
| 11 | 10 | nn0cni | |- ; ; ; 4 0 0 0 e. CC |
| 12 | ax-1cn | |- 1 e. CC |
|
| 13 | 12 | addlidi | |- ( 0 + 1 ) = 1 |
| 14 | eqid | |- ; ; ; 4 0 0 0 = ; ; ; 4 0 0 0 |
|
| 15 | 9 7 13 14 | decsuc | |- ( ; ; ; 4 0 0 0 + 1 ) = ; ; ; 4 0 0 1 |
| 16 | 1 15 | eqtr4i | |- N = ( ; ; ; 4 0 0 0 + 1 ) |
| 17 | 11 12 16 | mvrraddi | |- ( N - 1 ) = ; ; ; 4 0 0 0 |
| 18 | 5nn0 | |- 5 e. NN0 |
|
| 19 | 8nn0 | |- 8 e. NN0 |
|
| 20 | 19 7 | deccl | |- ; 8 0 e. NN0 |
| 21 | eqid | |- ; ; 8 0 0 = ; ; 8 0 0 |
|
| 22 | eqid | |- ; 8 0 = ; 8 0 |
|
| 23 | 8t5e40 | |- ( 8 x. 5 ) = ; 4 0 |
|
| 24 | 5cn | |- 5 e. CC |
|
| 25 | 24 | mul02i | |- ( 0 x. 5 ) = 0 |
| 26 | 18 19 7 22 23 25 | decmul1 | |- ( ; 8 0 x. 5 ) = ; ; 4 0 0 |
| 27 | 18 20 7 21 26 25 | decmul1 | |- ( ; ; 8 0 0 x. 5 ) = ; ; ; 4 0 0 0 |
| 28 | 17 27 | eqtr4i | |- ( N - 1 ) = ( ; ; 8 0 0 x. 5 ) |
| 29 | 1nn0 | |- 1 e. NN0 |
|
| 30 | 9 29 | deccl | |- ; ; ; 4 0 0 1 e. NN0 |
| 31 | 1 30 | eqeltri | |- N e. NN0 |
| 32 | 31 | nn0cni | |- N e. CC |
| 33 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 34 | 32 12 33 | mp2an | |- ( ( N - 1 ) + 1 ) = N |
| 35 | 34 | eqcomi | |- N = ( ( N - 1 ) + 1 ) |
| 36 | 3nn0 | |- 3 e. NN0 |
|
| 37 | 2nn | |- 2 e. NN |
|
| 38 | 36 37 | decnncl | |- ; 3 2 e. NN |
| 39 | 3nn | |- 3 e. NN |
|
| 40 | 2nn0 | |- 2 e. NN0 |
|
| 41 | 36 40 | deccl | |- ; 3 2 e. NN0 |
| 42 | 29 40 | deccl | |- ; 1 2 e. NN0 |
| 43 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 44 | 24 | sqvali | |- ( 5 ^ 2 ) = ( 5 x. 5 ) |
| 45 | 5t5e25 | |- ( 5 x. 5 ) = ; 2 5 |
|
| 46 | 44 45 | eqtri | |- ( 5 ^ 2 ) = ; 2 5 |
| 47 | 2cn | |- 2 e. CC |
|
| 48 | 5t2e10 | |- ( 5 x. 2 ) = ; 1 0 |
|
| 49 | 24 47 48 | mulcomli | |- ( 2 x. 5 ) = ; 1 0 |
| 50 | 47 | addlidi | |- ( 0 + 2 ) = 2 |
| 51 | 29 7 40 49 50 | decaddi | |- ( ( 2 x. 5 ) + 2 ) = ; 1 2 |
| 52 | 18 40 18 46 18 40 51 45 | decmul1c | |- ( ( 5 ^ 2 ) x. 5 ) = ; ; 1 2 5 |
| 53 | 18 40 43 52 | numexpp1 | |- ( 5 ^ 3 ) = ; ; 1 2 5 |
| 54 | 6nn0 | |- 6 e. NN0 |
|
| 55 | 29 54 | deccl | |- ; 1 6 e. NN0 |
| 56 | eqid | |- ; 1 2 = ; 1 2 |
|
| 57 | eqid | |- ; 1 6 = ; 1 6 |
|
| 58 | 7nn0 | |- 7 e. NN0 |
|
| 59 | 7cn | |- 7 e. CC |
|
| 60 | 7p1e8 | |- ( 7 + 1 ) = 8 |
|
| 61 | 59 12 60 | addcomli | |- ( 1 + 7 ) = 8 |
| 62 | 61 19 | eqeltri | |- ( 1 + 7 ) e. NN0 |
| 63 | eqid | |- ; 3 2 = ; 3 2 |
|
| 64 | 3t1e3 | |- ( 3 x. 1 ) = 3 |
|
| 65 | 64 | oveq1i | |- ( ( 3 x. 1 ) + 1 ) = ( 3 + 1 ) |
| 66 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 67 | 65 66 | eqtri | |- ( ( 3 x. 1 ) + 1 ) = 4 |
| 68 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 69 | 68 61 | oveq12i | |- ( ( 2 x. 1 ) + ( 1 + 7 ) ) = ( 2 + 8 ) |
| 70 | 8cn | |- 8 e. CC |
|
| 71 | 8p2e10 | |- ( 8 + 2 ) = ; 1 0 |
|
| 72 | 70 47 71 | addcomli | |- ( 2 + 8 ) = ; 1 0 |
| 73 | 69 72 | eqtri | |- ( ( 2 x. 1 ) + ( 1 + 7 ) ) = ; 1 0 |
| 74 | 36 40 62 63 29 7 29 67 73 | decrmac | |- ( ( ; 3 2 x. 1 ) + ( 1 + 7 ) ) = ; 4 0 |
| 75 | 3t2e6 | |- ( 3 x. 2 ) = 6 |
|
| 76 | 75 | oveq1i | |- ( ( 3 x. 2 ) + 1 ) = ( 6 + 1 ) |
| 77 | 6p1e7 | |- ( 6 + 1 ) = 7 |
|
| 78 | 76 77 | eqtri | |- ( ( 3 x. 2 ) + 1 ) = 7 |
| 79 | 2t2e4 | |- ( 2 x. 2 ) = 4 |
|
| 80 | 79 | oveq1i | |- ( ( 2 x. 2 ) + 6 ) = ( 4 + 6 ) |
| 81 | 6cn | |- 6 e. CC |
|
| 82 | 4cn | |- 4 e. CC |
|
| 83 | 6p4e10 | |- ( 6 + 4 ) = ; 1 0 |
|
| 84 | 81 82 83 | addcomli | |- ( 4 + 6 ) = ; 1 0 |
| 85 | 80 84 | eqtri | |- ( ( 2 x. 2 ) + 6 ) = ; 1 0 |
| 86 | 36 40 54 63 40 7 29 78 85 | decrmac | |- ( ( ; 3 2 x. 2 ) + 6 ) = ; 7 0 |
| 87 | 29 40 29 54 56 57 41 7 58 74 86 | decma2c | |- ( ( ; 3 2 x. ; 1 2 ) + ; 1 6 ) = ; ; 4 0 0 |
| 88 | 5p1e6 | |- ( 5 + 1 ) = 6 |
|
| 89 | 3cn | |- 3 e. CC |
|
| 90 | 5t3e15 | |- ( 5 x. 3 ) = ; 1 5 |
|
| 91 | 24 89 90 | mulcomli | |- ( 3 x. 5 ) = ; 1 5 |
| 92 | 29 18 88 91 | decsuc | |- ( ( 3 x. 5 ) + 1 ) = ; 1 6 |
| 93 | 18 36 40 63 7 29 92 49 | decmul1c | |- ( ; 3 2 x. 5 ) = ; ; 1 6 0 |
| 94 | 41 42 18 53 7 55 87 93 | decmul2c | |- ( ; 3 2 x. ( 5 ^ 3 ) ) = ; ; ; 4 0 0 0 |
| 95 | 17 94 | eqtr4i | |- ( N - 1 ) = ( ; 3 2 x. ( 5 ^ 3 ) ) |
| 96 | 2lt10 | |- 2 < ; 1 0 |
|
| 97 | 1nn | |- 1 e. NN |
|
| 98 | 3lt10 | |- 3 < ; 1 0 |
|
| 99 | 97 40 36 98 | declti | |- 3 < ; 1 2 |
| 100 | 36 42 40 18 96 99 | decltc | |- ; 3 2 < ; ; 1 2 5 |
| 101 | 100 53 | breqtrri | |- ; 3 2 < ( 5 ^ 3 ) |
| 102 | 1 | 4001lem3 | |- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |
| 103 | 1 | 4001lem4 | |- ( ( ( 2 ^ ; ; 8 0 0 ) - 1 ) gcd N ) = 1 |
| 104 | 2 5 28 35 38 39 37 95 101 102 103 | pockthi | |- N e. Prime |