| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4that.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							4that.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							4that.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							4that.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simp21l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A )  | 
						
						
							| 6 | 
							
								5
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S = P ) -> P e. A )  | 
						
						
							| 7 | 
							
								
							 | 
							simp21r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W )  | 
						
						
							| 8 | 
							
								7
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S = P ) -> -. P .<_ W )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq1 | 
							 |-  ( P = S -> ( P .\/ P ) = ( S .\/ P ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcoms | 
							 |-  ( S = P -> ( P .\/ P ) = ( S .\/ P ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S = P ) -> ( P .\/ P ) = ( S .\/ P ) )  | 
						
						
							| 12 | 
							
								
							 | 
							breq1 | 
							 |-  ( z = P -> ( z .<_ W <-> P .<_ W ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							notbid | 
							 |-  ( z = P -> ( -. z .<_ W <-> -. P .<_ W ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							 |-  ( z = P -> ( P .\/ z ) = ( P .\/ P ) )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							 |-  ( z = P -> ( S .\/ z ) = ( S .\/ P ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							eqeq12d | 
							 |-  ( z = P -> ( ( P .\/ z ) = ( S .\/ z ) <-> ( P .\/ P ) = ( S .\/ P ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							anbi12d | 
							 |-  ( z = P -> ( ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) <-> ( -. P .<_ W /\ ( P .\/ P ) = ( S .\/ P ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							rspcev | 
							 |-  ( ( P e. A /\ ( -. P .<_ W /\ ( P .\/ P ) = ( S .\/ P ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 19 | 
							
								6 8 11 18
							 | 
							syl12anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S = P ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl3r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S = Q ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							breq1 | 
							 |-  ( r = z -> ( r .<_ W <-> z .<_ W ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							notbid | 
							 |-  ( r = z -> ( -. r .<_ W <-> -. z .<_ W ) )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = z -> ( P .\/ r ) = ( P .\/ z ) )  | 
						
						
							| 25 | 
							
								
							 | 
							oveq2 | 
							 |-  ( r = z -> ( Q .\/ r ) = ( Q .\/ z ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							eqeq12d | 
							 |-  ( r = z -> ( ( P .\/ r ) = ( Q .\/ r ) <-> ( P .\/ z ) = ( Q .\/ z ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							anbi12d | 
							 |-  ( r = z -> ( ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> ( -. z .<_ W /\ ( P .\/ z ) = ( Q .\/ z ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							cbvrexvw | 
							 |-  ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( Q .\/ z ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq1 | 
							 |-  ( S = Q -> ( S .\/ z ) = ( Q .\/ z ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eqeq2d | 
							 |-  ( S = Q -> ( ( P .\/ z ) = ( S .\/ z ) <-> ( P .\/ z ) = ( Q .\/ z ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							anbi2d | 
							 |-  ( S = Q -> ( ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) <-> ( -. z .<_ W /\ ( P .\/ z ) = ( Q .\/ z ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							rexbidv | 
							 |-  ( S = Q -> ( E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) <-> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( Q .\/ z ) ) ) )  | 
						
						
							| 33 | 
							
								28 32
							 | 
							bitr4id | 
							 |-  ( S = Q -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S = Q ) -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) <-> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) )  | 
						
						
							| 35 | 
							
								21 34
							 | 
							mpbid | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S = Q ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> Q e. A )  | 
						
						
							| 38 | 
							
								
							 | 
							simp22r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. Q .<_ W )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> -. Q .<_ W )  | 
						
						
							| 40 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q )  | 
						
						
							| 41 | 
							
								40
							 | 
							necomd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q =/= P )  | 
						
						
							| 42 | 
							
								41
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> Q =/= P )  | 
						
						
							| 43 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> S =/= Q )  | 
						
						
							| 44 | 
							
								43
							 | 
							necomd | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> Q =/= S )  | 
						
						
							| 45 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> S .<_ ( P .\/ Q ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL )  | 
						
						
							| 47 | 
							
								
							 | 
							hlcvl | 
							 |-  ( K e. HL -> K e. CvLat )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. CvLat )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> K e. CvLat )  | 
						
						
							| 50 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S e. A )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> S e. A )  | 
						
						
							| 52 | 
							
								5
							 | 
							ad3antrrr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> P e. A )  | 
						
						
							| 53 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> S =/= P )  | 
						
						
							| 54 | 
							
								1 2 3
							 | 
							cvlatexch1 | 
							 |-  ( ( K e. CvLat /\ ( S e. A /\ Q e. A /\ P e. A ) /\ S =/= P ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) )  | 
						
						
							| 55 | 
							
								49 51 37 52 53 54
							 | 
							syl131anc | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> ( S .<_ ( P .\/ Q ) -> Q .<_ ( P .\/ S ) ) )  | 
						
						
							| 56 | 
							
								45 55
							 | 
							mpd | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> Q .<_ ( P .\/ S ) )  | 
						
						
							| 57 | 
							
								53
							 | 
							necomd | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> P =/= S )  | 
						
						
							| 58 | 
							
								3 1 2
							 | 
							cvlsupr2 | 
							 |-  ( ( K e. CvLat /\ ( P e. A /\ S e. A /\ Q e. A ) /\ P =/= S ) -> ( ( P .\/ Q ) = ( S .\/ Q ) <-> ( Q =/= P /\ Q =/= S /\ Q .<_ ( P .\/ S ) ) ) )  | 
						
						
							| 59 | 
							
								49 52 51 37 57 58
							 | 
							syl131anc | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> ( ( P .\/ Q ) = ( S .\/ Q ) <-> ( Q =/= P /\ Q =/= S /\ Q .<_ ( P .\/ S ) ) ) )  | 
						
						
							| 60 | 
							
								42 44 56 59
							 | 
							mpbir3and | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> ( P .\/ Q ) = ( S .\/ Q ) )  | 
						
						
							| 61 | 
							
								
							 | 
							breq1 | 
							 |-  ( z = Q -> ( z .<_ W <-> Q .<_ W ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							notbid | 
							 |-  ( z = Q -> ( -. z .<_ W <-> -. Q .<_ W ) )  | 
						
						
							| 63 | 
							
								
							 | 
							oveq2 | 
							 |-  ( z = Q -> ( P .\/ z ) = ( P .\/ Q ) )  | 
						
						
							| 64 | 
							
								
							 | 
							oveq2 | 
							 |-  ( z = Q -> ( S .\/ z ) = ( S .\/ Q ) )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							eqeq12d | 
							 |-  ( z = Q -> ( ( P .\/ z ) = ( S .\/ z ) <-> ( P .\/ Q ) = ( S .\/ Q ) ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							anbi12d | 
							 |-  ( z = Q -> ( ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) <-> ( -. Q .<_ W /\ ( P .\/ Q ) = ( S .\/ Q ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							rspcev | 
							 |-  ( ( Q e. A /\ ( -. Q .<_ W /\ ( P .\/ Q ) = ( S .\/ Q ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 68 | 
							
								37 39 60 67
							 | 
							syl12anc | 
							 |-  ( ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) /\ S =/= Q ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 69 | 
							
								35 68
							 | 
							pm2.61dane | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) /\ S =/= P ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 70 | 
							
								19 69
							 | 
							pm2.61dane | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ S .<_ ( P .\/ Q ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 72 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) )  | 
						
						
							| 73 | 
							
								
							 | 
							simpl3l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> P =/= Q )  | 
						
						
							| 74 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 75 | 
							
								
							 | 
							simpl3r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )  | 
						
						
							| 76 | 
							
								1 2 3 4
							 | 
							4atexlem7 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 77 | 
							
								71 72 73 74 75 76
							 | 
							syl113anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) /\ -. S .<_ ( P .\/ Q ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 78 | 
							
								70 77
							 | 
							pm2.61dan | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  |