Step |
Hyp |
Ref |
Expression |
1 |
|
4that.l |
|- .<_ = ( le ` K ) |
2 |
|
4that.j |
|- .\/ = ( join ` K ) |
3 |
|
4that.a |
|- A = ( Atoms ` K ) |
4 |
|
4that.h |
|- H = ( LHyp ` K ) |
5 |
|
simp32l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> T e. A ) |
6 |
|
simp32r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. T .<_ W ) |
7 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL ) |
8 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
9 |
7 8
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. OL ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 3
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
12 |
5 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> T e. ( Base ` K ) ) |
13 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
14 |
10 2 13
|
olj02 |
|- ( ( K e. OL /\ T e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ T ) = T ) |
15 |
9 12 14
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( ( 0. ` K ) .\/ T ) = T ) |
16 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S = ( 0. ` K ) ) |
17 |
16
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ T ) = ( ( 0. ` K ) .\/ T ) ) |
18 |
2 3
|
hlatjidm |
|- ( ( K e. HL /\ T e. A ) -> ( T .\/ T ) = T ) |
19 |
7 5 18
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( T .\/ T ) = T ) |
20 |
15 17 19
|
3eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ T ) = ( T .\/ T ) ) |
21 |
|
breq1 |
|- ( z = T -> ( z .<_ W <-> T .<_ W ) ) |
22 |
21
|
notbid |
|- ( z = T -> ( -. z .<_ W <-> -. T .<_ W ) ) |
23 |
|
oveq2 |
|- ( z = T -> ( S .\/ z ) = ( S .\/ T ) ) |
24 |
|
oveq2 |
|- ( z = T -> ( T .\/ z ) = ( T .\/ T ) ) |
25 |
23 24
|
eqeq12d |
|- ( z = T -> ( ( S .\/ z ) = ( T .\/ z ) <-> ( S .\/ T ) = ( T .\/ T ) ) ) |
26 |
22 25
|
anbi12d |
|- ( z = T -> ( ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) <-> ( -. T .<_ W /\ ( S .\/ T ) = ( T .\/ T ) ) ) ) |
27 |
26
|
rspcev |
|- ( ( T e. A /\ ( -. T .<_ W /\ ( S .\/ T ) = ( T .\/ T ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) ) |
28 |
5 6 20 27
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ ( T e. A /\ -. T .<_ W ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) ) |