Metamath Proof Explorer


Theorem 4atex2-0cOLDN

Description: Same as 4atex2 except that S and T are zero. TODO: do we need this one or 4atex2-0aOLDN or 4atex2-0bOLDN ? (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l
|- .<_ = ( le ` K )
4that.j
|- .\/ = ( join ` K )
4that.a
|- A = ( Atoms ` K )
4that.h
|- H = ( LHyp ` K )
Assertion 4atex2-0cOLDN
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) )

Proof

Step Hyp Ref Expression
1 4that.l
 |-  .<_ = ( le ` K )
2 4that.j
 |-  .\/ = ( join ` K )
3 4that.a
 |-  A = ( Atoms ` K )
4 4that.h
 |-  H = ( LHyp ` K )
5 simp21l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A )
6 simp21r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W )
7 simp23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S = ( 0. ` K ) )
8 7 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ P ) = ( ( 0. ` K ) .\/ P ) )
9 simp32
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> T = ( 0. ` K ) )
10 9 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( T .\/ P ) = ( ( 0. ` K ) .\/ P ) )
11 8 10 eqtr4d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ P ) = ( T .\/ P ) )
12 breq1
 |-  ( z = P -> ( z .<_ W <-> P .<_ W ) )
13 12 notbid
 |-  ( z = P -> ( -. z .<_ W <-> -. P .<_ W ) )
14 oveq2
 |-  ( z = P -> ( S .\/ z ) = ( S .\/ P ) )
15 oveq2
 |-  ( z = P -> ( T .\/ z ) = ( T .\/ P ) )
16 14 15 eqeq12d
 |-  ( z = P -> ( ( S .\/ z ) = ( T .\/ z ) <-> ( S .\/ P ) = ( T .\/ P ) ) )
17 13 16 anbi12d
 |-  ( z = P -> ( ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) <-> ( -. P .<_ W /\ ( S .\/ P ) = ( T .\/ P ) ) ) )
18 17 rspcev
 |-  ( ( P e. A /\ ( -. P .<_ W /\ ( S .\/ P ) = ( T .\/ P ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) )
19 5 6 11 18 syl12anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) )