| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4that.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4that.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4that.a |
|- A = ( Atoms ` K ) |
| 4 |
|
4that.h |
|- H = ( LHyp ` K ) |
| 5 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A ) |
| 6 |
|
simp21r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. P .<_ W ) |
| 7 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S = ( 0. ` K ) ) |
| 8 |
7
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ P ) = ( ( 0. ` K ) .\/ P ) ) |
| 9 |
|
simp32 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> T = ( 0. ` K ) ) |
| 10 |
9
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( T .\/ P ) = ( ( 0. ` K ) .\/ P ) ) |
| 11 |
8 10
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S .\/ P ) = ( T .\/ P ) ) |
| 12 |
|
breq1 |
|- ( z = P -> ( z .<_ W <-> P .<_ W ) ) |
| 13 |
12
|
notbid |
|- ( z = P -> ( -. z .<_ W <-> -. P .<_ W ) ) |
| 14 |
|
oveq2 |
|- ( z = P -> ( S .\/ z ) = ( S .\/ P ) ) |
| 15 |
|
oveq2 |
|- ( z = P -> ( T .\/ z ) = ( T .\/ P ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( z = P -> ( ( S .\/ z ) = ( T .\/ z ) <-> ( S .\/ P ) = ( T .\/ P ) ) ) |
| 17 |
13 16
|
anbi12d |
|- ( z = P -> ( ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) <-> ( -. P .<_ W /\ ( S .\/ P ) = ( T .\/ P ) ) ) ) |
| 18 |
17
|
rspcev |
|- ( ( P e. A /\ ( -. P .<_ W /\ ( S .\/ P ) = ( T .\/ P ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) ) |
| 19 |
5 6 11 18
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S = ( 0. ` K ) ) /\ ( P =/= Q /\ T = ( 0. ` K ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( S .\/ z ) = ( T .\/ z ) ) ) |