| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4that.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							4that.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							4that.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							4that.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simp11l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp1r1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3ad2ant1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1r2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> r e. A )  | 
						
						
							| 11 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> -. r .<_ W )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							jca | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( r e. A /\ -. r .<_ W ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp1r3 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> S e. A )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> S e. A )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> ( P .\/ r ) = ( Q .\/ r ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> P =/= Q )  | 
						
						
							| 17 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( meet ` K ) = ( meet ` K )  | 
						
						
							| 19 | 
							
								1 2 18 3 4
							 | 
							4atexlemex6 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( r e. A /\ -. r .<_ W ) /\ S e. A ) /\ ( ( P .\/ r ) = ( Q .\/ r ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 20 | 
							
								5 7 9 12 14 15 16 17 19
							 | 
							syl323anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) /\ r e. A /\ ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							rexlimdv3a | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) /\ P =/= Q /\ -. S .<_ ( P .\/ Q ) ) -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3exp | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) -> ( P =/= Q -> ( -. S .<_ ( P .\/ Q ) -> ( E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3impd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) ) -> ( ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							3impia | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ S e. A ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  |