| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							4thatlem.ph | 
							 |-  ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							4thatlem0.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							4thatlem0.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							4thatlem0.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							4thatlem0.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							4thatlem0.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							4thatlem0.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							4thatlem0.v | 
							 |-  V = ( ( P .\/ S ) ./\ W )  | 
						
						
							| 9 | 
							
								
							 | 
							4thatlem0.c | 
							 |-  C = ( ( Q .\/ T ) ./\ ( P .\/ S ) )  | 
						
						
							| 10 | 
							
								
							 | 
							4thatlem0.d | 
							 |-  D = ( ( R .\/ T ) ./\ ( P .\/ S ) )  | 
						
						
							| 11 | 
							
								1 2 3 5 7
							 | 
							4atexlemswapqr | 
							 |-  ( ph -> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							4atexlemcnd | 
							 |-  ( ph -> C =/= D )  | 
						
						
							| 13 | 
							
								
							 | 
							pm13.18 | 
							 |-  ( ( C = S /\ C =/= D ) -> S =/= D )  | 
						
						
							| 14 | 
							
								13
							 | 
							necomd | 
							 |-  ( ( C = S /\ C =/= D ) -> D =/= S )  | 
						
						
							| 15 | 
							
								14
							 | 
							expcom | 
							 |-  ( C =/= D -> ( C = S -> D =/= S ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							syl | 
							 |-  ( ph -> ( C = S -> D =/= S ) )  | 
						
						
							| 17 | 
							
								
							 | 
							biid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( ( P .\/ R ) ./\ W ) = ( ( P .\/ R ) ./\ W )  | 
						
						
							| 19 | 
							
								17 2 3 4 5 6 18 8 10
							 | 
							4atexlemex2 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) /\ D =/= S ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  | 
						
						
							| 20 | 
							
								11 16 19
							 | 
							syl6an | 
							 |-  ( ph -> ( C = S -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imp | 
							 |-  ( ( ph /\ C = S ) -> E. z e. A ( -. z .<_ W /\ ( P .\/ z ) = ( S .\/ z ) ) )  |