Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) ) |
2 |
|
4thatlem0.l |
|- .<_ = ( le ` K ) |
3 |
|
4thatlem0.j |
|- .\/ = ( join ` K ) |
4 |
|
4thatlem0.m |
|- ./\ = ( meet ` K ) |
5 |
|
4thatlem0.a |
|- A = ( Atoms ` K ) |
6 |
|
4thatlem0.h |
|- H = ( LHyp ` K ) |
7 |
|
4thatlem0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
4thatlem0.v |
|- V = ( ( P .\/ S ) ./\ W ) |
9 |
|
4thatlem0.c |
|- C = ( ( Q .\/ T ) ./\ ( P .\/ S ) ) |
10 |
1
|
4atexlemkl |
|- ( ph -> K e. Lat ) |
11 |
1 3 5
|
4atexlemqtb |
|- ( ph -> ( Q .\/ T ) e. ( Base ` K ) ) |
12 |
1 3 5
|
4atexlempsb |
|- ( ph -> ( P .\/ S ) e. ( Base ` K ) ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 2 4
|
latmle1 |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) |
15 |
10 11 12 14
|
syl3anc |
|- ( ph -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( Q .\/ T ) ) |
16 |
9 15
|
eqbrtrid |
|- ( ph -> C .<_ ( Q .\/ T ) ) |
17 |
|
simp13r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. Q .<_ W ) |
18 |
1 17
|
sylbi |
|- ( ph -> -. Q .<_ W ) |
19 |
1
|
4atexlemkc |
|- ( ph -> K e. CvLat ) |
20 |
1 2 3 4 5 6 7 8
|
4atexlemv |
|- ( ph -> V e. A ) |
21 |
1
|
4atexlemq |
|- ( ph -> Q e. A ) |
22 |
1
|
4atexlemt |
|- ( ph -> T e. A ) |
23 |
1 2 3 4 5 6 7
|
4atexlemu |
|- ( ph -> U e. A ) |
24 |
1 2 3 4 5 6 7 8
|
4atexlemunv |
|- ( ph -> U =/= V ) |
25 |
1
|
4atexlemutvt |
|- ( ph -> ( U .\/ T ) = ( V .\/ T ) ) |
26 |
5 3
|
cvlsupr6 |
|- ( ( K e. CvLat /\ ( U e. A /\ V e. A /\ T e. A ) /\ ( U =/= V /\ ( U .\/ T ) = ( V .\/ T ) ) ) -> T =/= V ) |
27 |
26
|
necomd |
|- ( ( K e. CvLat /\ ( U e. A /\ V e. A /\ T e. A ) /\ ( U =/= V /\ ( U .\/ T ) = ( V .\/ T ) ) ) -> V =/= T ) |
28 |
19 23 20 22 24 25 27
|
syl132anc |
|- ( ph -> V =/= T ) |
29 |
2 3 5
|
cvlatexch2 |
|- ( ( K e. CvLat /\ ( V e. A /\ Q e. A /\ T e. A ) /\ V =/= T ) -> ( V .<_ ( Q .\/ T ) -> Q .<_ ( V .\/ T ) ) ) |
30 |
19 20 21 22 28 29
|
syl131anc |
|- ( ph -> ( V .<_ ( Q .\/ T ) -> Q .<_ ( V .\/ T ) ) ) |
31 |
1 6
|
4atexlemwb |
|- ( ph -> W e. ( Base ` K ) ) |
32 |
13 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
33 |
10 12 31 32
|
syl3anc |
|- ( ph -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
34 |
8 33
|
eqbrtrid |
|- ( ph -> V .<_ W ) |
35 |
1 2 3 4 5 6 7 8
|
4atexlemtlw |
|- ( ph -> T .<_ W ) |
36 |
13 5
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
37 |
20 36
|
syl |
|- ( ph -> V e. ( Base ` K ) ) |
38 |
13 5
|
atbase |
|- ( T e. A -> T e. ( Base ` K ) ) |
39 |
22 38
|
syl |
|- ( ph -> T e. ( Base ` K ) ) |
40 |
13 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( V e. ( Base ` K ) /\ T e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( V .<_ W /\ T .<_ W ) <-> ( V .\/ T ) .<_ W ) ) |
41 |
10 37 39 31 40
|
syl13anc |
|- ( ph -> ( ( V .<_ W /\ T .<_ W ) <-> ( V .\/ T ) .<_ W ) ) |
42 |
34 35 41
|
mpbi2and |
|- ( ph -> ( V .\/ T ) .<_ W ) |
43 |
13 5
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
44 |
21 43
|
syl |
|- ( ph -> Q e. ( Base ` K ) ) |
45 |
1
|
4atexlemk |
|- ( ph -> K e. HL ) |
46 |
13 3 5
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ T e. A ) -> ( V .\/ T ) e. ( Base ` K ) ) |
47 |
45 20 22 46
|
syl3anc |
|- ( ph -> ( V .\/ T ) e. ( Base ` K ) ) |
48 |
13 2
|
lattr |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( V .\/ T ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) ) -> ( ( Q .<_ ( V .\/ T ) /\ ( V .\/ T ) .<_ W ) -> Q .<_ W ) ) |
49 |
10 44 47 31 48
|
syl13anc |
|- ( ph -> ( ( Q .<_ ( V .\/ T ) /\ ( V .\/ T ) .<_ W ) -> Q .<_ W ) ) |
50 |
42 49
|
mpan2d |
|- ( ph -> ( Q .<_ ( V .\/ T ) -> Q .<_ W ) ) |
51 |
30 50
|
syld |
|- ( ph -> ( V .<_ ( Q .\/ T ) -> Q .<_ W ) ) |
52 |
18 51
|
mtod |
|- ( ph -> -. V .<_ ( Q .\/ T ) ) |
53 |
|
nbrne2 |
|- ( ( C .<_ ( Q .\/ T ) /\ -. V .<_ ( Q .\/ T ) ) -> C =/= V ) |
54 |
16 52 53
|
syl2anc |
|- ( ph -> C =/= V ) |
55 |
1
|
4atexlemw |
|- ( ph -> W e. H ) |
56 |
45 55
|
jca |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
57 |
1
|
4atexlempw |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
58 |
1
|
4atexlems |
|- ( ph -> S e. A ) |
59 |
1 2 3 4 5 6 7 8 9
|
4atexlemc |
|- ( ph -> C e. A ) |
60 |
1 2 3 5
|
4atexlempns |
|- ( ph -> P =/= S ) |
61 |
13 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( Q .\/ T ) e. ( Base ` K ) /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ S ) ) |
62 |
10 11 12 61
|
syl3anc |
|- ( ph -> ( ( Q .\/ T ) ./\ ( P .\/ S ) ) .<_ ( P .\/ S ) ) |
63 |
9 62
|
eqbrtrid |
|- ( ph -> C .<_ ( P .\/ S ) ) |
64 |
2 3 4 5 6 8
|
lhpat3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( S e. A /\ C e. A ) /\ ( P =/= S /\ C .<_ ( P .\/ S ) ) ) -> ( -. C .<_ W <-> C =/= V ) ) |
65 |
56 57 58 59 60 63 64
|
syl222anc |
|- ( ph -> ( -. C .<_ W <-> C =/= V ) ) |
66 |
54 65
|
mpbird |
|- ( ph -> -. C .<_ W ) |