Metamath Proof Explorer


Theorem 4atexlempns

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
4thatlemslps.l
|- .<_ = ( le ` K )
4thatlemslps.j
|- .\/ = ( join ` K )
4thatlemslps.a
|- A = ( Atoms ` K )
Assertion 4atexlempns
|- ( ph -> P =/= S )

Proof

Step Hyp Ref Expression
1 4thatlem.ph
 |-  ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
2 4thatlemslps.l
 |-  .<_ = ( le ` K )
3 4thatlemslps.j
 |-  .\/ = ( join ` K )
4 4thatlemslps.a
 |-  A = ( Atoms ` K )
5 1 4atexlemk
 |-  ( ph -> K e. HL )
6 1 4atexlemp
 |-  ( ph -> P e. A )
7 1 4atexlemq
 |-  ( ph -> Q e. A )
8 1 4atexlems
 |-  ( ph -> S e. A )
9 1 4atexlemnslpq
 |-  ( ph -> -. S .<_ ( P .\/ Q ) )
10 2 3 4 4atlem0be
 |-  ( ( K e. HL /\ ( P e. A /\ Q e. A /\ S e. A ) /\ -. S .<_ ( P .\/ Q ) ) -> P =/= S )
11 5 6 7 8 9 10 syl131anc
 |-  ( ph -> P =/= S )