Metamath Proof Explorer


Theorem 4atexlemqtb

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
4thatlempqb.j
|- .\/ = ( join ` K )
4thatlempqb.a
|- A = ( Atoms ` K )
Assertion 4atexlemqtb
|- ( ph -> ( Q .\/ T ) e. ( Base ` K ) )

Proof

Step Hyp Ref Expression
1 4thatlem.ph
 |-  ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
2 4thatlempqb.j
 |-  .\/ = ( join ` K )
3 4thatlempqb.a
 |-  A = ( Atoms ` K )
4 1 4atexlemk
 |-  ( ph -> K e. HL )
5 1 4atexlemq
 |-  ( ph -> Q e. A )
6 1 4atexlemt
 |-  ( ph -> T e. A )
7 eqid
 |-  ( Base ` K ) = ( Base ` K )
8 7 2 3 hlatjcl
 |-  ( ( K e. HL /\ Q e. A /\ T e. A ) -> ( Q .\/ T ) e. ( Base ` K ) )
9 4 5 6 8 syl3anc
 |-  ( ph -> ( Q .\/ T ) e. ( Base ` K ) )