| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4thatlem.ph |
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) ) |
| 2 |
|
4thatlemslps.l |
|- .<_ = ( le ` K ) |
| 3 |
|
4thatlemslps.j |
|- .\/ = ( join ` K ) |
| 4 |
|
4thatlemslps.a |
|- A = ( Atoms ` K ) |
| 5 |
|
4thatlemsw.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 6 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
1 6
|
sylbi |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
1
|
4atexlempw |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
| 9 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) ) |
| 10 |
|
3simpa |
|- ( ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 11 |
9 10
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 12 |
1 11
|
sylbi |
|- ( ph -> ( R e. A /\ -. R .<_ W ) ) |
| 13 |
7 8 12
|
3jca |
|- ( ph -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) ) |
| 14 |
1
|
4atexlems |
|- ( ph -> S e. A ) |
| 15 |
1
|
4atexlemq |
|- ( ph -> Q e. A ) |
| 16 |
|
simp13r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. Q .<_ W ) |
| 17 |
1 16
|
sylbi |
|- ( ph -> -. Q .<_ W ) |
| 18 |
1
|
4atexlemkc |
|- ( ph -> K e. CvLat ) |
| 19 |
1
|
4atexlemp |
|- ( ph -> P e. A ) |
| 20 |
12
|
simpld |
|- ( ph -> R e. A ) |
| 21 |
1
|
4atexlempnq |
|- ( ph -> P =/= Q ) |
| 22 |
|
simp223 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 23 |
1 22
|
sylbi |
|- ( ph -> ( P .\/ R ) = ( Q .\/ R ) ) |
| 24 |
4 3
|
cvlsupr7 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( R .\/ Q ) ) |
| 25 |
18 19 15 20 21 23 24
|
syl132anc |
|- ( ph -> ( P .\/ Q ) = ( R .\/ Q ) ) |
| 26 |
15 17 25
|
3jca |
|- ( ph -> ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) ) |
| 27 |
1
|
4atexlemt |
|- ( ph -> T e. A ) |
| 28 |
4 3
|
cvlsupr8 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> ( P .\/ Q ) = ( P .\/ R ) ) |
| 29 |
18 19 15 20 21 23 28
|
syl132anc |
|- ( ph -> ( P .\/ Q ) = ( P .\/ R ) ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) = ( ( P .\/ R ) ./\ W ) ) |
| 31 |
5 30
|
eqtrid |
|- ( ph -> U = ( ( P .\/ R ) ./\ W ) ) |
| 32 |
31
|
oveq1d |
|- ( ph -> ( U .\/ T ) = ( ( ( P .\/ R ) ./\ W ) .\/ T ) ) |
| 33 |
1
|
4atexlemutvt |
|- ( ph -> ( U .\/ T ) = ( V .\/ T ) ) |
| 34 |
32 33
|
eqtr3d |
|- ( ph -> ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) |
| 35 |
27 34
|
jca |
|- ( ph -> ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) |
| 36 |
14 26 35
|
3jca |
|- ( ph -> ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) ) |
| 37 |
4 3
|
cvlsupr5 |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R =/= P ) |
| 38 |
37
|
necomd |
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> P =/= R ) |
| 39 |
18 19 15 20 21 23 38
|
syl132anc |
|- ( ph -> P =/= R ) |
| 40 |
1
|
4atexlemnslpq |
|- ( ph -> -. S .<_ ( P .\/ Q ) ) |
| 41 |
29
|
eqcomd |
|- ( ph -> ( P .\/ R ) = ( P .\/ Q ) ) |
| 42 |
41
|
breq2d |
|- ( ph -> ( S .<_ ( P .\/ R ) <-> S .<_ ( P .\/ Q ) ) ) |
| 43 |
40 42
|
mtbird |
|- ( ph -> -. S .<_ ( P .\/ R ) ) |
| 44 |
39 43
|
jca |
|- ( ph -> ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) |
| 45 |
13 36 44
|
3jca |
|- ( ph -> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( S e. A /\ ( Q e. A /\ -. Q .<_ W /\ ( P .\/ Q ) = ( R .\/ Q ) ) /\ ( T e. A /\ ( ( ( P .\/ R ) ./\ W ) .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= R /\ -. S .<_ ( P .\/ R ) ) ) ) |