Step |
Hyp |
Ref |
Expression |
1 |
|
4thatlem.ph |
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) ) |
2 |
|
4thatlem0.l |
|- .<_ = ( le ` K ) |
3 |
|
4thatlem0.j |
|- .\/ = ( join ` K ) |
4 |
|
4thatlem0.m |
|- ./\ = ( meet ` K ) |
5 |
|
4thatlem0.a |
|- A = ( Atoms ` K ) |
6 |
|
4thatlem0.h |
|- H = ( LHyp ` K ) |
7 |
|
4thatlem0.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
4thatlem0.v |
|- V = ( ( P .\/ S ) ./\ W ) |
9 |
1
|
4atexlemnslpq |
|- ( ph -> -. S .<_ ( P .\/ Q ) ) |
10 |
1
|
4atexlemk |
|- ( ph -> K e. HL ) |
11 |
1
|
4atexlemp |
|- ( ph -> P e. A ) |
12 |
1
|
4atexlems |
|- ( ph -> S e. A ) |
13 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ S e. A ) -> S .<_ ( P .\/ S ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ph -> S .<_ ( P .\/ S ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ U = V ) -> S .<_ ( P .\/ S ) ) |
16 |
1
|
4atexlemkl |
|- ( ph -> K e. Lat ) |
17 |
1 3 5
|
4atexlempsb |
|- ( ph -> ( P .\/ S ) e. ( Base ` K ) ) |
18 |
1 6
|
4atexlemwb |
|- ( ph -> W e. ( Base ` K ) ) |
19 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
20 |
19 2 4
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) ) |
21 |
16 17 18 20
|
syl3anc |
|- ( ph -> ( ( P .\/ S ) ./\ W ) .<_ ( P .\/ S ) ) |
22 |
8 21
|
eqbrtrid |
|- ( ph -> V .<_ ( P .\/ S ) ) |
23 |
1
|
4atexlemkc |
|- ( ph -> K e. CvLat ) |
24 |
1 2 3 4 5 6 7 8
|
4atexlemv |
|- ( ph -> V e. A ) |
25 |
19 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
26 |
16 17 18 25
|
syl3anc |
|- ( ph -> ( ( P .\/ S ) ./\ W ) .<_ W ) |
27 |
8 26
|
eqbrtrid |
|- ( ph -> V .<_ W ) |
28 |
1
|
4atexlempw |
|- ( ph -> ( P e. A /\ -. P .<_ W ) ) |
29 |
28
|
simprd |
|- ( ph -> -. P .<_ W ) |
30 |
|
nbrne2 |
|- ( ( V .<_ W /\ -. P .<_ W ) -> V =/= P ) |
31 |
27 29 30
|
syl2anc |
|- ( ph -> V =/= P ) |
32 |
2 3 5
|
cvlatexchb1 |
|- ( ( K e. CvLat /\ ( V e. A /\ S e. A /\ P e. A ) /\ V =/= P ) -> ( V .<_ ( P .\/ S ) <-> ( P .\/ V ) = ( P .\/ S ) ) ) |
33 |
23 24 12 11 31 32
|
syl131anc |
|- ( ph -> ( V .<_ ( P .\/ S ) <-> ( P .\/ V ) = ( P .\/ S ) ) ) |
34 |
22 33
|
mpbid |
|- ( ph -> ( P .\/ V ) = ( P .\/ S ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ U = V ) -> ( P .\/ V ) = ( P .\/ S ) ) |
36 |
|
oveq2 |
|- ( U = V -> ( P .\/ U ) = ( P .\/ V ) ) |
37 |
36
|
eqcomd |
|- ( U = V -> ( P .\/ V ) = ( P .\/ U ) ) |
38 |
1
|
4atexlemq |
|- ( ph -> Q e. A ) |
39 |
19 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
40 |
10 11 38 39
|
syl3anc |
|- ( ph -> ( P .\/ Q ) e. ( Base ` K ) ) |
41 |
19 2 4
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
42 |
16 40 18 41
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) .<_ ( P .\/ Q ) ) |
43 |
7 42
|
eqbrtrid |
|- ( ph -> U .<_ ( P .\/ Q ) ) |
44 |
1 2 3 4 5 6 7
|
4atexlemu |
|- ( ph -> U e. A ) |
45 |
19 2 4
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
46 |
16 40 18 45
|
syl3anc |
|- ( ph -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
47 |
7 46
|
eqbrtrid |
|- ( ph -> U .<_ W ) |
48 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. P .<_ W ) -> U =/= P ) |
49 |
47 29 48
|
syl2anc |
|- ( ph -> U =/= P ) |
50 |
2 3 5
|
cvlatexchb1 |
|- ( ( K e. CvLat /\ ( U e. A /\ Q e. A /\ P e. A ) /\ U =/= P ) -> ( U .<_ ( P .\/ Q ) <-> ( P .\/ U ) = ( P .\/ Q ) ) ) |
51 |
23 44 38 11 49 50
|
syl131anc |
|- ( ph -> ( U .<_ ( P .\/ Q ) <-> ( P .\/ U ) = ( P .\/ Q ) ) ) |
52 |
43 51
|
mpbid |
|- ( ph -> ( P .\/ U ) = ( P .\/ Q ) ) |
53 |
37 52
|
sylan9eqr |
|- ( ( ph /\ U = V ) -> ( P .\/ V ) = ( P .\/ Q ) ) |
54 |
35 53
|
eqtr3d |
|- ( ( ph /\ U = V ) -> ( P .\/ S ) = ( P .\/ Q ) ) |
55 |
15 54
|
breqtrd |
|- ( ( ph /\ U = V ) -> S .<_ ( P .\/ Q ) ) |
56 |
55
|
ex |
|- ( ph -> ( U = V -> S .<_ ( P .\/ Q ) ) ) |
57 |
56
|
necon3bd |
|- ( ph -> ( -. S .<_ ( P .\/ Q ) -> U =/= V ) ) |
58 |
9 57
|
mpd |
|- ( ph -> U =/= V ) |