Metamath Proof Explorer


Theorem 4atexlemv

Description: Lemma for 4atexlem7 . (Contributed by NM, 23-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph
|- ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
4thatlem0.l
|- .<_ = ( le ` K )
4thatlem0.j
|- .\/ = ( join ` K )
4thatlem0.m
|- ./\ = ( meet ` K )
4thatlem0.a
|- A = ( Atoms ` K )
4thatlem0.h
|- H = ( LHyp ` K )
4thatlem0.u
|- U = ( ( P .\/ Q ) ./\ W )
4thatlem0.v
|- V = ( ( P .\/ S ) ./\ W )
Assertion 4atexlemv
|- ( ph -> V e. A )

Proof

Step Hyp Ref Expression
1 4thatlem.ph
 |-  ( ph <-> ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ ( R e. A /\ -. R .<_ W /\ ( P .\/ R ) = ( Q .\/ R ) ) /\ ( T e. A /\ ( U .\/ T ) = ( V .\/ T ) ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) )
2 4thatlem0.l
 |-  .<_ = ( le ` K )
3 4thatlem0.j
 |-  .\/ = ( join ` K )
4 4thatlem0.m
 |-  ./\ = ( meet ` K )
5 4thatlem0.a
 |-  A = ( Atoms ` K )
6 4thatlem0.h
 |-  H = ( LHyp ` K )
7 4thatlem0.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 4thatlem0.v
 |-  V = ( ( P .\/ S ) ./\ W )
9 1 4atexlemk
 |-  ( ph -> K e. HL )
10 1 4atexlemw
 |-  ( ph -> W e. H )
11 1 4atexlempw
 |-  ( ph -> ( P e. A /\ -. P .<_ W ) )
12 1 4atexlems
 |-  ( ph -> S e. A )
13 1 2 3 5 4atexlempns
 |-  ( ph -> P =/= S )
14 2 3 4 5 6 8 lhpat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( S e. A /\ P =/= S ) ) -> V e. A )
15 9 10 11 12 13 14 syl212anc
 |-  ( ph -> V e. A )