Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
|- .<_ = ( le ` K ) |
2 |
|
4at.j |
|- .\/ = ( join ` K ) |
3 |
|
4at.a |
|- A = ( Atoms ` K ) |
4 |
|
simp11 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
5 |
4
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
6 |
|
simp21l |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
9 |
6 8
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
10 |
|
simp21r |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
11 |
7 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
12 |
10 11
|
syl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
13 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
14 |
13
|
3ad2ant1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
15 |
|
simp22 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) |
16 |
|
simp23 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A ) |
17 |
7 2 3
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) |
18 |
4 15 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) |
19 |
7 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
20 |
5 14 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
21 |
7 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
22 |
5 9 12 20 21
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
23 |
|
simp11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
24 |
6 10 15
|
3jca |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A /\ V e. A ) ) |
25 |
24
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( R e. A /\ S e. A /\ V e. A ) ) |
26 |
16
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> W e. A ) |
27 |
|
simp2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ W ) ) |
28 |
|
simp33 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
29 |
28
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
30 |
26 27 29
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( W e. A /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
31 |
|
simp3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
32 |
1 2 3
|
4atlem10b |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ V e. A ) /\ ( W e. A /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
33 |
23 25 30 31 32
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
34 |
33
|
3exp |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) ) |
35 |
2 3
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ R e. A ) -> ( S .\/ R ) = ( R .\/ S ) ) |
36 |
4 10 6 35
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .\/ R ) = ( R .\/ S ) ) |
37 |
36
|
oveq2d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
38 |
37
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
39 |
|
simp11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
40 |
10 6 15
|
3jca |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S e. A /\ R e. A /\ V e. A ) ) |
41 |
40
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S e. A /\ R e. A /\ V e. A ) ) |
42 |
16
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> W e. A ) |
43 |
|
simp2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ W ) ) |
44 |
|
simp12 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
45 |
|
simp13 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
46 |
44 45
|
jca |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P e. A /\ Q e. A ) ) |
47 |
|
simp21 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A ) ) |
48 |
|
simp32 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
49 |
1 2 3
|
4atlem0a |
|- ( ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) /\ ( -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) ) |
50 |
4 46 47 48 28 49
|
syl32anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) ) |
51 |
50
|
3ad2ant1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ Q ) .\/ S ) ) |
52 |
42 43 51
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( W e. A /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ -. R .<_ ( ( P .\/ Q ) .\/ S ) ) ) |
53 |
|
simprr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
54 |
|
simprl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
55 |
53 54
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
56 |
55
|
3adant2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
57 |
1 2 3
|
4atlem10b |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( S e. A /\ R e. A /\ V e. A ) /\ ( W e. A /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ -. R .<_ ( ( P .\/ Q ) .\/ S ) ) ) /\ ( S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
58 |
39 41 52 56 57
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( S .\/ R ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
59 |
38 58
|
eqtr3d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ Q ) .\/ W ) /\ ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
60 |
59
|
3exp |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( P .\/ Q ) .\/ W ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) ) |
61 |
|
simp1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
62 |
|
simp3 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
63 |
1 2 3
|
4atlem3b |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) \/ -. S .<_ ( ( P .\/ Q ) .\/ W ) ) ) |
64 |
61 6 10 16 62 63
|
syl131anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ Q ) .\/ W ) \/ -. S .<_ ( ( P .\/ Q ) .\/ W ) ) ) |
65 |
34 60 64
|
mpjaod |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
66 |
22 65
|
sylbird |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |