| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4at.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4at.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4at.a |
|- A = ( Atoms ` K ) |
| 4 |
|
3anass |
|- ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 5 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
| 6 |
5
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
| 7 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
8 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 10 |
7 9
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
| 11 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
| 12 |
8 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 13 |
11 12
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
| 14 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
| 15 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> U e. A ) |
| 16 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 17 |
5 14 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ U ) e. ( Base ` K ) ) |
| 18 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) |
| 19 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A ) |
| 20 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) |
| 21 |
5 18 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) |
| 22 |
8 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ U ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
| 23 |
6 17 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
| 24 |
8 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 25 |
6 10 13 23 24
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 26 |
25
|
anbi2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 27 |
4 26
|
bitrid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 28 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
| 29 |
8 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 30 |
28 29
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
| 31 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 32 |
5 7 11 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
| 33 |
8 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 34 |
6 30 32 23 33
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 35 |
27 34
|
bitrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 36 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
| 37 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A ) ) |
| 38 |
18 19
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V e. A /\ W e. A ) ) |
| 39 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 40 |
1 2 3
|
4atlem3a |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) ) |
| 41 |
36 37 38 39 40
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) ) |
| 42 |
|
simp1l |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 43 |
|
simp1r |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
| 44 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. Q .<_ ( ( P .\/ V ) .\/ W ) ) |
| 45 |
|
simp3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 46 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 47 |
42 43 44 45 46
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 48 |
47
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 49 |
5
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> K e. HL ) |
| 50 |
14
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P e. A ) |
| 51 |
28
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q e. A ) |
| 52 |
7
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R e. A ) |
| 53 |
11
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S e. A ) |
| 54 |
2 3
|
hlatj4 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ R ) .\/ ( Q .\/ S ) ) ) |
| 55 |
49 50 51 52 53 54
|
syl122anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ R ) .\/ ( Q .\/ S ) ) ) |
| 56 |
49 50 52
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ R e. A ) ) |
| 57 |
51 53
|
jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( Q e. A /\ S e. A ) ) |
| 58 |
|
simp1l3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
| 59 |
|
simp1r2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
| 60 |
1 2 3
|
4atlem0be |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= R ) |
| 61 |
49 50 51 52 59 60
|
syl131anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P =/= R ) |
| 62 |
|
simp1r1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P =/= Q ) |
| 63 |
1 2 3
|
4atlem0ae |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. Q .<_ ( P .\/ R ) ) |
| 64 |
49 50 51 52 62 59 63
|
syl132anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. Q .<_ ( P .\/ R ) ) |
| 65 |
|
simp1r3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
| 66 |
2 3
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
| 67 |
49 50 51 52 66
|
syl13anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
| 68 |
67
|
breq2d |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> S .<_ ( ( P .\/ R ) .\/ Q ) ) ) |
| 69 |
65 68
|
mtbid |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ R ) .\/ Q ) ) |
| 70 |
61 64 69
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= R /\ -. Q .<_ ( P .\/ R ) /\ -. S .<_ ( ( P .\/ R ) .\/ Q ) ) ) |
| 71 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ V ) .\/ W ) ) |
| 72 |
|
simp32 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 73 |
|
simp31 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 74 |
|
simp33 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 75 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ R e. A ) /\ ( Q e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= R /\ -. Q .<_ ( P .\/ R ) /\ -. S .<_ ( ( P .\/ R ) .\/ Q ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ R ) .\/ ( Q .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 76 |
56 57 58 70 71 72 73 74 75
|
syl323anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ R ) .\/ ( Q .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 77 |
55 76
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 78 |
77
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 79 |
8 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 80 |
14 79
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) |
| 81 |
8 2
|
latj4rot |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
| 82 |
6 80 30 10 13 81
|
syl122anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
| 83 |
2 3
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ P e. A ) -> ( S .\/ P ) = ( P .\/ S ) ) |
| 84 |
5 11 14 83
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .\/ P ) = ( P .\/ S ) ) |
| 85 |
84
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
| 86 |
82 85
|
eqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
| 87 |
86
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
| 88 |
5 14 11
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ S e. A ) ) |
| 89 |
28 7
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q e. A /\ R e. A ) ) |
| 90 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
| 91 |
88 89 90
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 92 |
91
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
| 93 |
1 2 3
|
4noncolr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
| 94 |
36 37 39 93
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
| 95 |
|
necom |
|- ( S =/= P <-> P =/= S ) |
| 96 |
95
|
a1i |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P <-> P =/= S ) ) |
| 97 |
84
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q .<_ ( S .\/ P ) <-> Q .<_ ( P .\/ S ) ) ) |
| 98 |
97
|
notbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( S .\/ P ) <-> -. Q .<_ ( P .\/ S ) ) ) |
| 99 |
84
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S .\/ P ) .\/ Q ) = ( ( P .\/ S ) .\/ Q ) ) |
| 100 |
99
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .<_ ( ( S .\/ P ) .\/ Q ) <-> R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
| 101 |
100
|
notbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( S .\/ P ) .\/ Q ) <-> -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
| 102 |
96 98 101
|
3anbi123d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) <-> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) ) |
| 103 |
94 102
|
mpbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
| 104 |
103
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
| 105 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ V ) .\/ W ) ) |
| 106 |
|
simpr3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 107 |
|
simpr1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 108 |
|
simpr2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 109 |
106 107 108
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 110 |
109
|
3adant2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 111 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ S ) .\/ ( Q .\/ R ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 112 |
92 104 105 110 111
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ S ) .\/ ( Q .\/ R ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 113 |
87 112
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
| 114 |
113
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 115 |
48 78 114
|
3jaod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
| 116 |
41 115
|
mpd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
| 117 |
35 116
|
sylbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |