Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
|- .<_ = ( le ` K ) |
2 |
|
4at.j |
|- .\/ = ( join ` K ) |
3 |
|
4at.a |
|- A = ( Atoms ` K ) |
4 |
|
3anass |
|- ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
5 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
6 |
5
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
7 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
8 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
10 |
7 9
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
11 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
12 |
8 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
13 |
11 12
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
14 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
15 |
|
simpl31 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> U e. A ) |
16 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
17 |
5 14 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ U ) e. ( Base ` K ) ) |
18 |
|
simpl32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) |
19 |
|
simpl33 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A ) |
20 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) |
21 |
5 18 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) |
22 |
8 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ U ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
23 |
6 17 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
24 |
8 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
25 |
6 10 13 23 24
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
26 |
25
|
anbi2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
27 |
4 26
|
syl5bb |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
28 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
29 |
8 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
30 |
28 29
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
31 |
8 2 3
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
32 |
5 7 11 31
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
33 |
8 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
34 |
6 30 32 23 33
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
35 |
27 34
|
bitrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
36 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
37 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A ) ) |
38 |
18 19
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V e. A /\ W e. A ) ) |
39 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
40 |
1 2 3
|
4atlem3a |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) ) |
41 |
36 37 38 39 40
|
syl31anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) ) |
42 |
|
simp1l |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
43 |
|
simp1r |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
44 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. Q .<_ ( ( P .\/ V ) .\/ W ) ) |
45 |
|
simp3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
46 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
47 |
42 43 44 45 46
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
48 |
47
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
49 |
5
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> K e. HL ) |
50 |
14
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P e. A ) |
51 |
28
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q e. A ) |
52 |
7
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R e. A ) |
53 |
11
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S e. A ) |
54 |
2 3
|
hlatj4 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ R ) .\/ ( Q .\/ S ) ) ) |
55 |
49 50 51 52 53 54
|
syl122anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ R ) .\/ ( Q .\/ S ) ) ) |
56 |
49 50 52
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ R e. A ) ) |
57 |
51 53
|
jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( Q e. A /\ S e. A ) ) |
58 |
|
simp1l3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
59 |
|
simp1r2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
60 |
1 2 3
|
4atlem0be |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= R ) |
61 |
49 50 51 52 59 60
|
syl131anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P =/= R ) |
62 |
|
simp1r1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P =/= Q ) |
63 |
1 2 3
|
4atlem0ae |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. Q .<_ ( P .\/ R ) ) |
64 |
49 50 51 52 62 59 63
|
syl132anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. Q .<_ ( P .\/ R ) ) |
65 |
|
simp1r3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ Q ) .\/ R ) ) |
66 |
2 3
|
hlatj32 |
|- ( ( K e. HL /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
67 |
49 50 51 52 66
|
syl13anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ R ) = ( ( P .\/ R ) .\/ Q ) ) |
68 |
67
|
breq2d |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ Q ) .\/ R ) <-> S .<_ ( ( P .\/ R ) .\/ Q ) ) ) |
69 |
65 68
|
mtbid |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ R ) .\/ Q ) ) |
70 |
61 64 69
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= R /\ -. Q .<_ ( P .\/ R ) /\ -. S .<_ ( ( P .\/ R ) .\/ Q ) ) ) |
71 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. R .<_ ( ( P .\/ V ) .\/ W ) ) |
72 |
|
simp32 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
73 |
|
simp31 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
74 |
|
simp33 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
75 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ R e. A ) /\ ( Q e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= R /\ -. Q .<_ ( P .\/ R ) /\ -. S .<_ ( ( P .\/ R ) .\/ Q ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ R ) .\/ ( Q .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
76 |
56 57 58 70 71 72 73 74 75
|
syl323anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ R ) .\/ ( Q .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
77 |
55 76
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
78 |
77
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
79 |
8 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
80 |
14 79
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) |
81 |
8 2
|
latj4rot |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
82 |
6 80 30 10 13 81
|
syl122anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) |
83 |
2 3
|
hlatjcom |
|- ( ( K e. HL /\ S e. A /\ P e. A ) -> ( S .\/ P ) = ( P .\/ S ) ) |
84 |
5 11 14 83
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S .\/ P ) = ( P .\/ S ) ) |
85 |
84
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
86 |
82 85
|
eqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
87 |
86
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ S ) .\/ ( Q .\/ R ) ) ) |
88 |
5 14 11
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ S e. A ) ) |
89 |
28 7
|
jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q e. A /\ R e. A ) ) |
90 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
91 |
88 89 90
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
92 |
91
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) |
93 |
1 2 3
|
4noncolr1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
94 |
36 37 39 93
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) |
95 |
|
necom |
|- ( S =/= P <-> P =/= S ) |
96 |
95
|
a1i |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P <-> P =/= S ) ) |
97 |
84
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q .<_ ( S .\/ P ) <-> Q .<_ ( P .\/ S ) ) ) |
98 |
97
|
notbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( S .\/ P ) <-> -. Q .<_ ( P .\/ S ) ) ) |
99 |
84
|
oveq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S .\/ P ) .\/ Q ) = ( ( P .\/ S ) .\/ Q ) ) |
100 |
99
|
breq2d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .<_ ( ( S .\/ P ) .\/ Q ) <-> R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
101 |
100
|
notbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( S .\/ P ) .\/ Q ) <-> -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
102 |
96 98 101
|
3anbi123d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) <-> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) ) |
103 |
94 102
|
mpbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
104 |
103
|
3ad2ant1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) ) |
105 |
|
simp2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. S .<_ ( ( P .\/ V ) .\/ W ) ) |
106 |
|
simpr3 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
107 |
|
simpr1 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
108 |
|
simpr2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
109 |
106 107 108
|
3jca |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
110 |
109
|
3adant2 |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
111 |
1 2 3
|
4atlem11b |
|- ( ( ( ( K e. HL /\ P e. A /\ S e. A ) /\ ( Q e. A /\ R e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= S /\ -. Q .<_ ( P .\/ S ) /\ -. R .<_ ( ( P .\/ S ) .\/ Q ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ S ) .\/ ( Q .\/ R ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
112 |
92 104 105 110 111
|
syl121anc |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ S ) .\/ ( Q .\/ R ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
113 |
87 112
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( P .\/ V ) .\/ W ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
114 |
113
|
3exp |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( P .\/ V ) .\/ W ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
115 |
48 78 114
|
3jaod |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. Q .<_ ( ( P .\/ V ) .\/ W ) \/ -. R .<_ ( ( P .\/ V ) .\/ W ) \/ -. S .<_ ( ( P .\/ V ) .\/ W ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) ) |
116 |
41 115
|
mpd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
117 |
35 116
|
sylbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ ( R .\/ S ) ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |