Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
|- .<_ = ( le ` K ) |
2 |
|
4at.j |
|- .\/ = ( join ` K ) |
3 |
|
4at.a |
|- A = ( Atoms ` K ) |
4 |
|
simp11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
5 |
|
simp12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( R e. A /\ S e. A ) ) |
6 |
|
simp132 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> V e. A ) |
7 |
|
simp133 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> W e. A ) |
8 |
5 6 7
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) ) |
9 |
|
simp2l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
10 |
4 8 9
|
3jca |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) ) |
11 |
|
simp32 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
12 |
|
simp33 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
13 |
|
simp111 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> K e. HL ) |
14 |
13
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> K e. Lat ) |
15 |
|
simp12l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R e. A ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
16 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
18 |
15 17
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> R e. ( Base ` K ) ) |
19 |
|
simp12r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S e. A ) |
20 |
16 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> S e. ( Base ` K ) ) |
22 |
|
simp112 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> P e. A ) |
23 |
|
simp131 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> U e. A ) |
24 |
16 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ U e. A ) -> ( P .\/ U ) e. ( Base ` K ) ) |
25 |
13 22 23 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( P .\/ U ) e. ( Base ` K ) ) |
26 |
16 2 3
|
hlatjcl |
|- ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) |
27 |
13 6 7 26
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) |
28 |
16 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ U ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
29 |
14 25 27 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) |
30 |
16 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( P .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
31 |
14 18 21 29 30
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
32 |
11 12 31
|
mpbi2and |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( R .\/ S ) .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
33 |
|
simp31 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
34 |
|
simp13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) |
35 |
|
simp2r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> -. Q .<_ ( ( P .\/ V ) .\/ W ) ) |
36 |
1 2 3
|
4atlem11a |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) -> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) <-> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
37 |
4 34 35 36
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) <-> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) |
38 |
33 37
|
mpbid |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( V .\/ W ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |
39 |
32 38
|
breqtrrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
40 |
1 2 3
|
4atlem10 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( ( R e. A /\ S e. A ) /\ V e. A /\ W e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .\/ S ) .<_ ( ( P .\/ Q ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) ) |
41 |
10 39 40
|
sylc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ Q ) .\/ ( V .\/ W ) ) ) |
42 |
41 38
|
eqtrd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. Q .<_ ( ( P .\/ V ) .\/ W ) ) /\ ( Q .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( P .\/ U ) .\/ ( V .\/ W ) ) ) |