| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4at.l |  |-  .<_ = ( le ` K ) | 
						
							| 2 |  | 4at.j |  |-  .\/ = ( join ` K ) | 
						
							| 3 |  | 4at.a |  |-  A = ( Atoms ` K ) | 
						
							| 4 |  | simpl11 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) | 
						
							| 5 | 4 | hllatd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) | 
						
							| 6 |  | simpl12 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) | 
						
							| 7 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 8 | 7 3 | atbase |  |-  ( P e. A -> P e. ( Base ` K ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) | 
						
							| 10 |  | simpl13 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) | 
						
							| 11 | 7 3 | atbase |  |-  ( Q e. A -> Q e. ( Base ` K ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) | 
						
							| 13 |  | simpl23 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> T e. A ) | 
						
							| 14 |  | simpl31 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> U e. A ) | 
						
							| 15 | 7 2 3 | hlatjcl |  |-  ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) | 
						
							| 16 | 4 13 14 15 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( T .\/ U ) e. ( Base ` K ) ) | 
						
							| 17 |  | simpl32 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) | 
						
							| 18 |  | simpl33 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> W e. A ) | 
						
							| 19 | 7 2 3 | hlatjcl |  |-  ( ( K e. HL /\ V e. A /\ W e. A ) -> ( V .\/ W ) e. ( Base ` K ) ) | 
						
							| 20 | 4 17 18 19 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V .\/ W ) e. ( Base ` K ) ) | 
						
							| 21 | 7 2 | latjcl |  |-  ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ ( V .\/ W ) e. ( Base ` K ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) | 
						
							| 22 | 5 16 20 21 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) | 
						
							| 23 | 7 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 24 | 5 9 12 22 23 | syl13anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 25 |  | simpl21 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) | 
						
							| 26 | 7 3 | atbase |  |-  ( R e. A -> R e. ( Base ` K ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) | 
						
							| 28 |  | simpl22 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) | 
						
							| 29 | 7 3 | atbase |  |-  ( S e. A -> S e. ( Base ` K ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) | 
						
							| 31 | 7 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 32 | 5 27 30 22 31 | syl13anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 33 | 24 32 | anbi12d |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 34 |  | simpl1 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) | 
						
							| 35 | 7 2 3 | hlatjcl |  |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) | 
						
							| 37 | 7 2 3 | hlatjcl |  |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) | 
						
							| 38 | 4 25 28 37 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) | 
						
							| 39 | 7 1 2 | latjle12 |  |-  ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ ( V .\/ W ) ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 40 | 5 36 38 22 39 | syl13anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 41 | 33 40 | bitrd |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 42 |  | simp1l |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 43 |  | simp1r |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 44 |  | simp2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. P .<_ ( ( U .\/ V ) .\/ W ) ) | 
						
							| 45 |  | simp3 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 46 | 1 2 3 | 4atlem12b |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 47 | 42 43 44 45 46 | syl121anc |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. P .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 48 | 47 | 3exp |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. P .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 49 | 7 2 | latj4rot |  |-  ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ R e. ( Base ` K ) ) /\ ( S e. ( Base ` K ) /\ P e. ( Base ` K ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) | 
						
							| 50 | 5 12 27 30 9 49 | syl122anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) | 
						
							| 51 | 50 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) | 
						
							| 52 | 4 10 25 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ Q e. A /\ R e. A ) ) | 
						
							| 53 | 28 6 13 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S e. A /\ P e. A /\ T e. A ) ) | 
						
							| 54 |  | simpl3 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( U e. A /\ V e. A /\ W e. A ) ) | 
						
							| 55 | 52 53 54 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 56 | 55 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 57 |  | simpr |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) | 
						
							| 58 | 1 2 3 | 4noncolr3 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 59 | 34 25 28 57 58 | syl121anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 60 | 59 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) ) | 
						
							| 61 |  | simp2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. Q .<_ ( ( U .\/ V ) .\/ W ) ) | 
						
							| 62 |  | simprlr |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 63 |  | simprrl |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 64 | 62 63 | jca |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 65 |  | simprrr |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 66 |  | simprll |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 67 | 64 65 66 | jca32 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 68 | 67 | 3adant2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 69 | 1 2 3 | 4atlem12b |  |-  ( ( ( ( K e. HL /\ Q e. A /\ R e. A ) /\ ( S e. A /\ P e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( Q =/= R /\ -. S .<_ ( Q .\/ R ) /\ -. P .<_ ( ( Q .\/ R ) .\/ S ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 70 | 56 60 61 68 69 | syl121anc |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( Q .\/ R ) .\/ ( S .\/ P ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 71 | 51 70 | eqtr3d |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. Q .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 72 | 71 | 3exp |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. Q .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 73 | 48 72 | jaod |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 74 | 7 2 | latjcom |  |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) | 
						
							| 75 | 5 36 38 74 | syl3anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) | 
						
							| 76 | 75 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( R .\/ S ) .\/ ( P .\/ Q ) ) ) | 
						
							| 77 | 4 25 28 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ R e. A /\ S e. A ) ) | 
						
							| 78 | 6 10 13 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P e. A /\ Q e. A /\ T e. A ) ) | 
						
							| 79 | 77 78 54 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 80 | 79 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 81 | 1 2 3 | 4noncolr2 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) | 
						
							| 82 | 34 25 28 57 81 | syl121anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) | 
						
							| 83 | 82 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) ) | 
						
							| 84 |  | simp2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. R .<_ ( ( U .\/ V ) .\/ W ) ) | 
						
							| 85 |  | simprr |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 86 |  | simprl |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 87 | 85 86 | jca |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 88 | 87 | 3adant2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 89 | 1 2 3 | 4atlem12b |  |-  ( ( ( ( K e. HL /\ R e. A /\ S e. A ) /\ ( P e. A /\ Q e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( R =/= S /\ -. P .<_ ( R .\/ S ) /\ -. Q .<_ ( ( R .\/ S ) .\/ P ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .\/ S ) .\/ ( P .\/ Q ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 90 | 80 83 84 88 89 | syl121anc |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( R .\/ S ) .\/ ( P .\/ Q ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 91 | 76 90 | eqtrd |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. R .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 92 | 91 | 3exp |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. R .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 93 | 7 2 | latj4rot |  |-  ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) | 
						
							| 94 | 5 9 12 27 30 93 | syl122anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) | 
						
							| 95 | 94 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( S .\/ P ) .\/ ( Q .\/ R ) ) ) | 
						
							| 96 | 4 28 6 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ S e. A /\ P e. A ) ) | 
						
							| 97 | 10 25 13 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( Q e. A /\ R e. A /\ T e. A ) ) | 
						
							| 98 | 96 97 54 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 99 | 98 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) ) | 
						
							| 100 | 1 2 3 | 4noncolr1 |  |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) | 
						
							| 101 | 34 25 28 57 100 | syl121anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) | 
						
							| 102 | 101 | 3ad2ant1 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) ) | 
						
							| 103 |  | simp2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> -. S .<_ ( ( U .\/ V ) .\/ W ) ) | 
						
							| 104 | 65 66 | jca |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 105 | 104 62 63 | jca32 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 106 | 105 | 3adant2 |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 107 | 1 2 3 | 4atlem12b |  |-  ( ( ( ( K e. HL /\ S e. A /\ P e. A ) /\ ( Q e. A /\ R e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( ( S =/= P /\ -. Q .<_ ( S .\/ P ) /\ -. R .<_ ( ( S .\/ P ) .\/ Q ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) ) /\ ( ( S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 108 | 99 102 103 106 107 | syl121anc |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( S .\/ P ) .\/ ( Q .\/ R ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 109 | 95 108 | eqtrd |  |-  ( ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) /\ -. S .<_ ( ( U .\/ V ) .\/ W ) /\ ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) | 
						
							| 110 | 109 | 3exp |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( -. S .<_ ( ( U .\/ V ) .\/ W ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 111 | 92 110 | jaod |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) ) | 
						
							| 112 | 25 28 14 | 3jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R e. A /\ S e. A /\ U e. A ) ) | 
						
							| 113 | 17 18 | jca |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( V e. A /\ W e. A ) ) | 
						
							| 114 | 1 2 3 | 4atlem3 |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ U e. A ) /\ ( V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) \/ ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) ) ) | 
						
							| 115 | 34 112 113 57 114 | syl31anc |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( U .\/ V ) .\/ W ) \/ -. Q .<_ ( ( U .\/ V ) .\/ W ) ) \/ ( -. R .<_ ( ( U .\/ V ) .\/ W ) \/ -. S .<_ ( ( U .\/ V ) .\/ W ) ) ) ) | 
						
							| 116 | 73 111 115 | mpjaod |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ Q .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) /\ S .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) | 
						
							| 117 | 41 116 | sylbird |  |-  ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A /\ W e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ ( V .\/ W ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( ( T .\/ U ) .\/ ( V .\/ W ) ) ) ) |