Step |
Hyp |
Ref |
Expression |
1 |
|
4at.l |
|- .<_ = ( le ` K ) |
2 |
|
4at.j |
|- .\/ = ( join ` K ) |
3 |
|
4at.a |
|- A = ( Atoms ` K ) |
4 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. HL ) |
5 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( K e. HL /\ P e. A /\ Q e. A ) ) |
6 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. A ) |
7 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. A ) |
8 |
|
simpr |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) |
9 |
|
eqid |
|- ( LVols ` K ) = ( LVols ` K ) |
10 |
1 2 3 9
|
lvoli2 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( LVols ` K ) ) |
11 |
5 6 7 8 10
|
syl121anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( LVols ` K ) ) |
12 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> T e. A ) |
13 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> U e. A ) |
14 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. A ) |
15 |
1 2 3 9
|
lvolnle3at |
|- ( ( ( K e. HL /\ ( ( ( P .\/ Q ) .\/ R ) .\/ S ) e. ( LVols ` K ) ) /\ ( T e. A /\ U e. A /\ V e. A ) ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) |
16 |
4 11 12 13 14 15
|
syl23anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. ( ( ( P .\/ Q ) .\/ R ) .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) |
17 |
4
|
hllatd |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> K e. Lat ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
18 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
20 |
5 19
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
21 |
18 2 3
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) ) |
22 |
4 6 7 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( R .\/ S ) e. ( Base ` K ) ) |
23 |
18 2 3
|
hlatjcl |
|- ( ( K e. HL /\ T e. A /\ U e. A ) -> ( T .\/ U ) e. ( Base ` K ) ) |
24 |
4 12 13 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( T .\/ U ) e. ( Base ` K ) ) |
25 |
18 3
|
atbase |
|- ( V e. A -> V e. ( Base ` K ) ) |
26 |
14 25
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> V e. ( Base ` K ) ) |
27 |
18 2
|
latjcl |
|- ( ( K e. Lat /\ ( T .\/ U ) e. ( Base ` K ) /\ V e. ( Base ` K ) ) -> ( ( T .\/ U ) .\/ V ) e. ( Base ` K ) ) |
28 |
17 24 26 27
|
syl3anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( T .\/ U ) .\/ V ) e. ( Base ` K ) ) |
29 |
18 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ S ) e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ V ) e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ V ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
30 |
17 20 22 28 29
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ V ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
31 |
|
simpl12 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. A ) |
32 |
18 3
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
33 |
31 32
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> P e. ( Base ` K ) ) |
34 |
|
simpl13 |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. A ) |
35 |
18 3
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
36 |
34 35
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> Q e. ( Base ` K ) ) |
37 |
18 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. ( Base ` K ) /\ Q e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ V ) e. ( Base ` K ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
38 |
17 33 36 28 37
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
39 |
18 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
40 |
6 39
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> R e. ( Base ` K ) ) |
41 |
18 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
42 |
7 41
|
syl |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> S e. ( Base ` K ) ) |
43 |
18 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ S e. ( Base ` K ) /\ ( ( T .\/ U ) .\/ V ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
44 |
17 40 42 28 43
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
45 |
38 44
|
anbi12d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) <-> ( ( P .\/ Q ) .<_ ( ( T .\/ U ) .\/ V ) /\ ( R .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |
46 |
18 2
|
latjass |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
47 |
17 20 40 42 46
|
syl13anc |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
48 |
47
|
breq1d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( ( P .\/ Q ) .\/ R ) .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) <-> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
49 |
30 45 48
|
3bitr4d |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) <-> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) .<_ ( ( T .\/ U ) .\/ V ) ) ) |
50 |
16 49
|
mtbird |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> -. ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |
51 |
|
ianor |
|- ( -. ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) <-> ( -. ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) \/ -. ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |
52 |
|
ianor |
|- ( -. ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( -. P .<_ ( ( T .\/ U ) .\/ V ) \/ -. Q .<_ ( ( T .\/ U ) .\/ V ) ) ) |
53 |
|
ianor |
|- ( -. ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) <-> ( -. R .<_ ( ( T .\/ U ) .\/ V ) \/ -. S .<_ ( ( T .\/ U ) .\/ V ) ) ) |
54 |
52 53
|
orbi12i |
|- ( ( -. ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) \/ -. ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) <-> ( ( -. P .<_ ( ( T .\/ U ) .\/ V ) \/ -. Q .<_ ( ( T .\/ U ) .\/ V ) ) \/ ( -. R .<_ ( ( T .\/ U ) .\/ V ) \/ -. S .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |
55 |
51 54
|
bitri |
|- ( -. ( ( P .<_ ( ( T .\/ U ) .\/ V ) /\ Q .<_ ( ( T .\/ U ) .\/ V ) ) /\ ( R .<_ ( ( T .\/ U ) .\/ V ) /\ S .<_ ( ( T .\/ U ) .\/ V ) ) ) <-> ( ( -. P .<_ ( ( T .\/ U ) .\/ V ) \/ -. Q .<_ ( ( T .\/ U ) .\/ V ) ) \/ ( -. R .<_ ( ( T .\/ U ) .\/ V ) \/ -. S .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |
56 |
50 55
|
sylib |
|- ( ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A /\ T e. A ) /\ ( U e. A /\ V e. A ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) /\ -. S .<_ ( ( P .\/ Q ) .\/ R ) ) ) -> ( ( -. P .<_ ( ( T .\/ U ) .\/ V ) \/ -. Q .<_ ( ( T .\/ U ) .\/ V ) ) \/ ( -. R .<_ ( ( T .\/ U ) .\/ V ) \/ -. S .<_ ( ( T .\/ U ) .\/ V ) ) ) ) |