| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4at.l |
|- .<_ = ( le ` K ) |
| 2 |
|
4at.j |
|- .\/ = ( join ` K ) |
| 3 |
|
4at.a |
|- A = ( Atoms ` K ) |
| 4 |
|
simpl1 |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> K e. HL ) |
| 5 |
4
|
hllatd |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> K e. Lat ) |
| 6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 7 |
6 2 3
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 8 |
7
|
adantr |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 9 |
6 3
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 10 |
9
|
ad2antrl |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> R e. ( Base ` K ) ) |
| 11 |
6 3
|
atbase |
|- ( S e. A -> S e. ( Base ` K ) ) |
| 12 |
11
|
ad2antll |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> S e. ( Base ` K ) ) |
| 13 |
6 2
|
latjass |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
| 14 |
5 8 10 12 13
|
syl13anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( ( P .\/ Q ) .\/ ( R .\/ S ) ) ) |
| 15 |
6 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
| 16 |
5 8 10 15
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) ) |
| 17 |
6 2
|
latjcom |
|- ( ( K e. Lat /\ ( ( P .\/ Q ) .\/ R ) e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( S .\/ ( ( P .\/ Q ) .\/ R ) ) ) |
| 18 |
5 16 12 17
|
syl3anc |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( ( P .\/ Q ) .\/ R ) .\/ S ) = ( S .\/ ( ( P .\/ Q ) .\/ R ) ) ) |
| 19 |
14 18
|
eqtr3d |
|- ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ ( R e. A /\ S e. A ) ) -> ( ( P .\/ Q ) .\/ ( R .\/ S ) ) = ( S .\/ ( ( P .\/ Q ) .\/ R ) ) ) |