Metamath Proof Explorer


Theorem 4bc2eq6

Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Assertion 4bc2eq6
|- ( 4 _C 2 ) = 6

Proof

Step Hyp Ref Expression
1 0z
 |-  0 e. ZZ
2 4z
 |-  4 e. ZZ
3 2z
 |-  2 e. ZZ
4 1 2 3 3pm3.2i
 |-  ( 0 e. ZZ /\ 4 e. ZZ /\ 2 e. ZZ )
5 0le2
 |-  0 <_ 2
6 2re
 |-  2 e. RR
7 4re
 |-  4 e. RR
8 2lt4
 |-  2 < 4
9 6 7 8 ltleii
 |-  2 <_ 4
10 5 9 pm3.2i
 |-  ( 0 <_ 2 /\ 2 <_ 4 )
11 elfz4
 |-  ( ( ( 0 e. ZZ /\ 4 e. ZZ /\ 2 e. ZZ ) /\ ( 0 <_ 2 /\ 2 <_ 4 ) ) -> 2 e. ( 0 ... 4 ) )
12 4 10 11 mp2an
 |-  2 e. ( 0 ... 4 )
13 bcval2
 |-  ( 2 e. ( 0 ... 4 ) -> ( 4 _C 2 ) = ( ( ! ` 4 ) / ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) ) )
14 12 13 ax-mp
 |-  ( 4 _C 2 ) = ( ( ! ` 4 ) / ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) )
15 3nn0
 |-  3 e. NN0
16 facp1
 |-  ( 3 e. NN0 -> ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) ) )
17 15 16 ax-mp
 |-  ( ! ` ( 3 + 1 ) ) = ( ( ! ` 3 ) x. ( 3 + 1 ) )
18 df-4
 |-  4 = ( 3 + 1 )
19 18 fveq2i
 |-  ( ! ` 4 ) = ( ! ` ( 3 + 1 ) )
20 18 oveq2i
 |-  ( ( ! ` 3 ) x. 4 ) = ( ( ! ` 3 ) x. ( 3 + 1 ) )
21 17 19 20 3eqtr4i
 |-  ( ! ` 4 ) = ( ( ! ` 3 ) x. 4 )
22 4cn
 |-  4 e. CC
23 2cn
 |-  2 e. CC
24 2p2e4
 |-  ( 2 + 2 ) = 4
25 22 23 23 24 subaddrii
 |-  ( 4 - 2 ) = 2
26 25 fveq2i
 |-  ( ! ` ( 4 - 2 ) ) = ( ! ` 2 )
27 fac2
 |-  ( ! ` 2 ) = 2
28 26 27 eqtri
 |-  ( ! ` ( 4 - 2 ) ) = 2
29 28 27 oveq12i
 |-  ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) = ( 2 x. 2 )
30 2t2e4
 |-  ( 2 x. 2 ) = 4
31 29 30 eqtri
 |-  ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) = 4
32 21 31 oveq12i
 |-  ( ( ! ` 4 ) / ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) ) = ( ( ( ! ` 3 ) x. 4 ) / 4 )
33 faccl
 |-  ( 3 e. NN0 -> ( ! ` 3 ) e. NN )
34 15 33 ax-mp
 |-  ( ! ` 3 ) e. NN
35 34 nncni
 |-  ( ! ` 3 ) e. CC
36 4ne0
 |-  4 =/= 0
37 35 22 36 divcan4i
 |-  ( ( ( ! ` 3 ) x. 4 ) / 4 ) = ( ! ` 3 )
38 fac3
 |-  ( ! ` 3 ) = 6
39 37 38 eqtri
 |-  ( ( ( ! ` 3 ) x. 4 ) / 4 ) = 6
40 32 39 eqtri
 |-  ( ( ! ` 4 ) / ( ( ! ` ( 4 - 2 ) ) x. ( ! ` 2 ) ) ) = 6
41 14 40 eqtri
 |-  ( 4 _C 2 ) = 6