Metamath Proof Explorer


Theorem 4cases

Description: Inference eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 25-Oct-2003)

Ref Expression
Hypotheses 4cases.1
|- ( ( ph /\ ps ) -> ch )
4cases.2
|- ( ( ph /\ -. ps ) -> ch )
4cases.3
|- ( ( -. ph /\ ps ) -> ch )
4cases.4
|- ( ( -. ph /\ -. ps ) -> ch )
Assertion 4cases
|- ch

Proof

Step Hyp Ref Expression
1 4cases.1
 |-  ( ( ph /\ ps ) -> ch )
2 4cases.2
 |-  ( ( ph /\ -. ps ) -> ch )
3 4cases.3
 |-  ( ( -. ph /\ ps ) -> ch )
4 4cases.4
 |-  ( ( -. ph /\ -. ps ) -> ch )
5 1 3 pm2.61ian
 |-  ( ps -> ch )
6 2 4 pm2.61ian
 |-  ( -. ps -> ch )
7 5 6 pm2.61i
 |-  ch