Metamath Proof Explorer


Theorem 4casesdan

Description: Deduction eliminating two antecedents from the four possible cases that result from their true/false combinations. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses 4casesdan.1
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
4casesdan.2
|- ( ( ph /\ ( ps /\ -. ch ) ) -> th )
4casesdan.3
|- ( ( ph /\ ( -. ps /\ ch ) ) -> th )
4casesdan.4
|- ( ( ph /\ ( -. ps /\ -. ch ) ) -> th )
Assertion 4casesdan
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 4casesdan.1
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
2 4casesdan.2
 |-  ( ( ph /\ ( ps /\ -. ch ) ) -> th )
3 4casesdan.3
 |-  ( ( ph /\ ( -. ps /\ ch ) ) -> th )
4 4casesdan.4
 |-  ( ( ph /\ ( -. ps /\ -. ch ) ) -> th )
5 1 expcom
 |-  ( ( ps /\ ch ) -> ( ph -> th ) )
6 2 expcom
 |-  ( ( ps /\ -. ch ) -> ( ph -> th ) )
7 3 expcom
 |-  ( ( -. ps /\ ch ) -> ( ph -> th ) )
8 4 expcom
 |-  ( ( -. ps /\ -. ch ) -> ( ph -> th ) )
9 5 6 7 8 4cases
 |-  ( ph -> th )