Metamath Proof Explorer


Theorem 4cycl2v2nb

Description: In a (maybe degenerate) 4-cycle, two vertice have two (maybe not different) common neighbors. (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Assertion 4cycl2v2nb
|- ( ( ( { A , B } e. E /\ { B , C } e. E ) /\ ( { C , D } e. E /\ { D , A } e. E ) ) -> ( { { A , B } , { B , C } } C_ E /\ { { A , D } , { D , C } } C_ E ) )

Proof

Step Hyp Ref Expression
1 prssi
 |-  ( ( { A , B } e. E /\ { B , C } e. E ) -> { { A , B } , { B , C } } C_ E )
2 prcom
 |-  { D , A } = { A , D }
3 2 eleq1i
 |-  ( { D , A } e. E <-> { A , D } e. E )
4 3 biimpi
 |-  ( { D , A } e. E -> { A , D } e. E )
5 prcom
 |-  { C , D } = { D , C }
6 5 eleq1i
 |-  ( { C , D } e. E <-> { D , C } e. E )
7 6 biimpi
 |-  ( { C , D } e. E -> { D , C } e. E )
8 prssi
 |-  ( ( { A , D } e. E /\ { D , C } e. E ) -> { { A , D } , { D , C } } C_ E )
9 4 7 8 syl2anr
 |-  ( ( { C , D } e. E /\ { D , A } e. E ) -> { { A , D } , { D , C } } C_ E )
10 1 9 anim12i
 |-  ( ( ( { A , B } e. E /\ { B , C } e. E ) /\ ( { C , D } e. E /\ { D , A } e. E ) ) -> ( { { A , B } , { B , C } } C_ E /\ { { A , D } , { D , C } } C_ E ) )