Metamath Proof Explorer


Theorem 4d2e2

Description: One half of four is two. (Contributed by NM, 3-Sep-1999)

Ref Expression
Assertion 4d2e2
|- ( 4 / 2 ) = 2

Proof

Step Hyp Ref Expression
1 2t2e4
 |-  ( 2 x. 2 ) = 4
2 4cn
 |-  4 e. CC
3 2cn
 |-  2 e. CC
4 2ne0
 |-  2 =/= 0
5 2 3 3 4 divmuli
 |-  ( ( 4 / 2 ) = 2 <-> ( 2 x. 2 ) = 4 )
6 1 5 mpbir
 |-  ( 4 / 2 ) = 2