Metamath Proof Explorer


Theorem 4dvdseven

Description: An integer which is divisible by 4 is divisible by 2, that is, is even. (Contributed by AV, 4-Jul-2021)

Ref Expression
Assertion 4dvdseven
|- ( 4 || N -> 2 || N )

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 1 a1i
 |-  ( 4 || N -> 2 e. ZZ )
3 4z
 |-  4 e. ZZ
4 3 a1i
 |-  ( 4 || N -> 4 e. ZZ )
5 dvdszrcl
 |-  ( 4 || N -> ( 4 e. ZZ /\ N e. ZZ ) )
6 5 simprd
 |-  ( 4 || N -> N e. ZZ )
7 2 4 6 3jca
 |-  ( 4 || N -> ( 2 e. ZZ /\ 4 e. ZZ /\ N e. ZZ ) )
8 z4even
 |-  2 || 4
9 8 jctl
 |-  ( 4 || N -> ( 2 || 4 /\ 4 || N ) )
10 dvdstr
 |-  ( ( 2 e. ZZ /\ 4 e. ZZ /\ N e. ZZ ) -> ( ( 2 || 4 /\ 4 || N ) -> 2 || N ) )
11 7 9 10 sylc
 |-  ( 4 || N -> 2 || N )