Metamath Proof Explorer


Theorem 4even

Description: 4 is an even number. (Contributed by AV, 23-Jul-2020)

Ref Expression
Assertion 4even
|- 4 e. Even

Proof

Step Hyp Ref Expression
1 3odd
 |-  3 e. Odd
2 df-4
 |-  4 = ( 3 + 1 )
3 oddp1eveni
 |-  ( 3 e. Odd -> ( 3 + 1 ) e. Even )
4 2 3 eqeltrid
 |-  ( 3 e. Odd -> 4 e. Even )
5 1 4 ax-mp
 |-  4 e. Even