Metamath Proof Explorer


Theorem 4exdistrv

Description: Distribute two pairs of existential quantifiers (over disjoint variables) over a conjunction. For a version with fewer disjoint variable conditions but requiring more axioms, see ee4anv . (Contributed by BJ, 5-Jan-2023)

Ref Expression
Assertion 4exdistrv
|- ( E. x E. z E. y E. w ( ph /\ ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) )

Proof

Step Hyp Ref Expression
1 exdistrv
 |-  ( E. y E. w ( ph /\ ps ) <-> ( E. y ph /\ E. w ps ) )
2 1 2exbii
 |-  ( E. x E. z E. y E. w ( ph /\ ps ) <-> E. x E. z ( E. y ph /\ E. w ps ) )
3 exdistrv
 |-  ( E. x E. z ( E. y ph /\ E. w ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) )
4 2 3 bitri
 |-  ( E. x E. z E. y E. w ( ph /\ ps ) <-> ( E. x E. y ph /\ E. z E. w ps ) )