Metamath Proof Explorer


Theorem 4exmid

Description: The disjunction of the four possible combinations of two wffs and their negations is always true. A four-way excluded middle (see exmid ). (Contributed by David Abernethy, 28-Jan-2014) (Proof shortened by NM, 29-Oct-2021)

Ref Expression
Assertion 4exmid
|- ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) \/ ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )

Proof

Step Hyp Ref Expression
1 pm5.24
 |-  ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) <-> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )
2 1 biimpi
 |-  ( -. ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) -> ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )
3 2 orri
 |-  ( ( ( ph /\ ps ) \/ ( -. ph /\ -. ps ) ) \/ ( ( ph /\ -. ps ) \/ ( ps /\ -. ph ) ) )