Metamath Proof Explorer


Theorem 4lt10

Description: 4 is less than 10. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 4lt10
|- 4 < ; 1 0

Proof

Step Hyp Ref Expression
1 4lt5
 |-  4 < 5
2 5lt10
 |-  5 < ; 1 0
3 4re
 |-  4 e. RR
4 5re
 |-  5 e. RR
5 10re
 |-  ; 1 0 e. RR
6 3 4 5 lttri
 |-  ( ( 4 < 5 /\ 5 < ; 1 0 ) -> 4 < ; 1 0 )
7 1 2 6 mp2an
 |-  4 < ; 1 0