Metamath Proof Explorer


Theorem 4lt5

Description: 4 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 4lt5
|- 4 < 5

Proof

Step Hyp Ref Expression
1 4re
 |-  4 e. RR
2 1 ltp1i
 |-  4 < ( 4 + 1 )
3 df-5
 |-  5 = ( 4 + 1 )
4 2 3 breqtrri
 |-  4 < 5