Metamath Proof Explorer


Theorem 4lt6

Description: 4 is less than 6. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 4lt6
|- 4 < 6

Proof

Step Hyp Ref Expression
1 4lt5
 |-  4 < 5
2 5lt6
 |-  5 < 6
3 4re
 |-  4 e. RR
4 5re
 |-  5 e. RR
5 6re
 |-  6 e. RR
6 3 4 5 lttri
 |-  ( ( 4 < 5 /\ 5 < 6 ) -> 4 < 6 )
7 1 2 6 mp2an
 |-  4 < 6